Skip to main content
Log in

Dissociable effects of anterior and mediodorsal thalamic lesions on spatial goal-directed behavior

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Goal-directed behaviors are thought to be supported by a neural circuit encompassing the prefrontal cortex, the dorsomedial striatum, the amygdala, and, as more recently suggested, the limbic thalamus. Since evidence indicates that the various thalamic nuclei contribute to dissociable functions, we directly compared the functional contribution of the mediodorsal thalamus (MD) and of the anterior thalamic nuclei (ATN) in a new task assessing spatial goal-directed behavior in a cross-maze. Rats sustaining lesions of the mediodorsal or the anterior thalamus were trained to associate each of the two goal arms with a distinctive food reward. Unlike control rats, both lesioned groups failed to express a bias for the goal arm corresponding to the non-devalued outcome following devaluation by sensory-specific satiety. In addition, MD rats were slower than the other groups to complete the trials. When tested for spatial working memory using a standard non-matching-to-place procedure in the same apparatus, ATN rats were severely impaired but MD rats performed as well as controls, even when spatial or temporal challenges were introduced. Finally, all groups displayed comparable breaking points in a progressive ratio test, indicating that the slower choice performance of MD rats did not result from motivational factors. Thus, a spatial task requiring the integration of instrumental and Pavlovian contingencies reveals a fundamental deficit of MD rats in adapting their choice according to goal value. By contrast, the deficit associated with anterior thalamic lesions appears to simply reflect the inability to process spatial information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggleton JP, Hunt PR, Nagle S, Neave N (1996) The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat. Behav Brain Res 81:189–198

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Poirier GL, Aggleton HS, Vann SD, Pearce JM (2009) Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of hippocampal-dependent spatial learning: implications for the neural basis of scene learning. Behav Neurosci 123:504–519. doi:10.1037/a0015404

    Article  PubMed  Google Scholar 

  • Aggleton JP, Amin E, Jenkins TA, Pearce JM, Robinson J (2011) Lesions in the anterior thalamic nuclei of rats do not disrupt acquisition of stimulus sequence learning. Q J Exp Psychol (Hove) 64:65–73. doi:10.1080/17470218.2010.495407

    Article  PubMed Central  Google Scholar 

  • Babb SJ, Crystal JD (2006) Episodic-like memory in the rat. Curr Biol 16:1317–1321. doi:10.1016/j.cub.2006.05.025

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, O’Doherty JP (2010) Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35:48–69. doi:10.1038/npp.2009.131

    Article  PubMed Central  PubMed  Google Scholar 

  • Balleine B, Ball J, Dickinson A (1994) Benzodiazepine-induced outcome revaluation and the motivational control of instrumental action in rats. Behav Neurosci 108:573–589

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Killcross AS, Dickinson A (2003) The effect of lesions of the basolateral amygdala on instrumental conditioning. J Neurosci 23:666–675

    CAS  PubMed  Google Scholar 

  • Corbit LH, Balleine BW (2003) The role of prelimbic cortex in instrumental conditioning. Behav Brain Res 146:145–157

    Article  PubMed  Google Scholar 

  • Corbit LH, Janak PH (2010) Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning. Eur J Neurosci 31:1312–1321. doi:10.1111/j.1460-9568.2010.07153.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Corbit LH, Muir JL, Balleine BW (2003) Lesions of mediodorsal thalamus and anterior thalamic nuclei produce dissociable effects on instrumental conditioning in rats. Eur J Neurosci 18:1286–1294

    Article  PubMed  Google Scholar 

  • Coutureau E, Marchand AR, Di Scala G (2009) Goal-directed responding is sensitive to lesions to the prelimbic cortex or basolateral nucleus of the amygdala but not to their disconnection. Behav Neurosci 123:443–448. doi:10.1037/a0014818

    Article  PubMed  Google Scholar 

  • Dickinson A (1985) Actions and habits: the development of behavioural autonomy. Phil Trans R Soc Lond B 308:67–78

    Article  Google Scholar 

  • Dupire A, Kant P, Mons N, Marchand AR, Coutureau E, Dalrymple-Alford J, Wolff M (2013) A role for anterior thalamic nuclei in affective cognition: interaction with environmental conditions Hippocampus 23:392–404. doi:10.1002/hipo.22098

    CAS  PubMed  Google Scholar 

  • Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177. doi:10.1002/cne.20738

    Article  PubMed  Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431

    Article  CAS  PubMed  Google Scholar 

  • Hayen A, Meese-Tamuri S, Gates A, Ito R (2014) Opposing roles of prelimbic and infralimbic dopamine in conditioned cue and place preference. Psychopharmacology. doi:10.1007/s00213-013-3414-0

    PubMed Central  PubMed  Google Scholar 

  • Holmes NM, Marchand AR, Coutureau E (2010) Pavlovian to instrumental transfer: a neurobehavioural perspective. Neurosci Biobehav Rev 34:1277–1295. doi:10.1016/j.neubiorev.2010.03.007

    Article  PubMed  Google Scholar 

  • Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179. doi:10.1007/s00429-007-0150-4

    Article  PubMed  Google Scholar 

  • Hunt PR, Aggleton JP (1998a) An examination of the spatial working memory deficit following neurotoxic medial dorsal thalamic lesions in rats. Behav Brain Res 97:129–141

    Article  CAS  PubMed  Google Scholar 

  • Hunt PR, Aggleton JP (1998b) Neurotoxic lesions of the dorsomedial thalamus impair the acquisition but not the performance of delayed matching to place by rats: a deficit in shifting response rules. J Neurosci 18:10045–10052

    CAS  PubMed  Google Scholar 

  • Hunt PR, Neave N, Shaw C, Aggleton JP (1994) The effects of lesions to the fornix and dorsomedial thalamus on concurrent discrimination learning by rats. Behav Brain Res 62:195–205

    Article  CAS  PubMed  Google Scholar 

  • Jankowski MM et al (2013) The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Front Syst Neurosci 7:45. doi:10.3389/fnsys.2013.00045

    Article  PubMed Central  PubMed  Google Scholar 

  • Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13:400–408

    Article  PubMed  Google Scholar 

  • Loukavenko EA, Ottley MC, Moran JP, Wolff M, Dalrymple-Alford JC (2007) Towards therapy to relieve memory impairment after anterior thalamic lesions: improved spatial working memory after immediate and delayed postoperative enrichment. Eur J Neurosci 26:3267–3276. doi:10.1111/j.1460-9568.2007.05879.x

    Article  PubMed  Google Scholar 

  • Marchand A, Faugere A, Coutureau E, Wolff M (2013) A role for anterior thalamic nuclei in contextual fear memory. Brain Struct Funct 219 (5):1575–1586. doi:10.1007/s00429-013-0586-7

    Article  PubMed  Google Scholar 

  • McDannald MA, Jones JL, Takahashi YK, Schoenbaum G (2014) Learning theory: a driving force in understanding orbitofrontal function. Neurobiol Learn Mem 108:22–27. doi:10.1016/j.nlm.2013.06.003

    Article  PubMed  Google Scholar 

  • Mitchell AS, Browning PG, Baxter MG (2007) Neurotoxic lesions of the medial mediodorsal nucleus of the thalamus disrupt reinforcer devaluation effects in rhesus monkeys. J Neurosci 27:11289–11295. doi:10.1523/JNEUROSCI.1914-07.2007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2005) Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal-directed learning. J Neurosci 25:7763–7770. doi:10.1523/JNEUROSCI.1921-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2008) Differential involvement of the basolateral amygdala and mediodorsal thalamus in instrumental action selection. J Neurosci 28:4398–4405. doi:10.1523/JNEUROSCI.5472-07.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parkes SL, Balleine BW (2013) Incentive memory: evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions. J Neurosci 33:8753–8763. doi:10.1523/JNEUROSCI.5071-12.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pickens CL (2008) A limited role for mediodorsal thalamus in devaluation tasks. Behav Neurosci 122:659–676. doi:10.1037/0735-7044.122.3.659

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith KS, Virkud A, Deisseroth K, Graybiel AM (2012) Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex. Proc Natl Acad Sci USA 109:18932–18937. doi:10.1073/pnas.1216264109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka SC, Balleine BW, O’Doherty JP (2008) Calculating consequences: brain systems that encode the causal effects of actions. J Neurosci 28:6750–6755. doi:10.1523/JNEUROSCI.1808-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran-Tu-Yen DA, Marchand AR, Pape JR, Di Scala G, Coutureau E (2009) Transient role of the rat prelimbic cortex in goal-directed behaviour. Eur J Neurosci 30:464–471. doi:10.1111/j.1460-9568.2009.06834.x

    Article  PubMed  Google Scholar 

  • Ulrich K, Aitken PN, Abraham WC, Dalrymple-Alford JC, McNaughton N (2014) Effects of thalamic lesions on repeated relearning of a spatial working memory task. Behav Brain Res 261:56–59. doi:10.1016/j.bbr.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  • Valentin VV, Dickinson A, O’Doherty JP (2007) Determining the neural substrates of goal-directed learning in the human brain. J Neurosci 27:4019–4026. doi:10.1523/JNEUROSCI.0564-07.2007

    Article  CAS  PubMed  Google Scholar 

  • van Groen T, Kadish I, Michael Wyss J (2002) Role of the anterodorsal and anteroventral nuclei of the thalamus in spatial memory in the rat. Behav Brain Res 132:19–28

    Article  PubMed  Google Scholar 

  • Warburton EC, Baird AL, Aggleton JP (1997) Assessing the magnitude of the allocentric spatial deficit associated with complete loss of the anterior thalamic nuclei in rats. Behav Brain Res 87:223–232

    Article  CAS  PubMed  Google Scholar 

  • Warburton EC, Morgan A, Baird AL, Muir JL, Aggleton JP (1999) Does pretraining spare the spatial deficit associated with anterior thalamic damage in rats? Behav Neurosci 113:956–967

    Article  CAS  PubMed  Google Scholar 

  • Warburton EC, Baird AL, Morgan A, Muir JL, Aggleton JP (2000) Disconnecting hippocampal projections to the anterior thalamus produces deficits on tests of spatial memory in rats. Eur J Neurosci 12:1714–1726

    Article  CAS  PubMed  Google Scholar 

  • Warburton EC, Baird A, Morgan A, Muir JL, Aggleton JP (2001) The conjoint importance of the hippocampus and anterior thalamic nuclei for allocentric spatial learning: evidence from a disconnection study in the rat. J Neurosci 21:7323–7330

    CAS  PubMed  Google Scholar 

  • Ward-Robinson J, Wilton LA, Muir JL, Honey RC, Vann SD, Aggleton JP (2002) Sensory preconditioning in rats with lesions of the anterior thalamic nuclei: evidence for intact nonspatial ‘relational’ processing. Behav Brain Res 133:125–133

    Article  CAS  PubMed  Google Scholar 

  • Wilton LA, Baird AL, Muir JL, Honey RC, Aggleton JP (2001) Loss of the thalamic nuclei for “head direction” impairs performance on spatial memory tasks in rats. Behav Neurosci 115:861–869

    Article  CAS  PubMed  Google Scholar 

  • Wolff M, Gibb SJ, Dalrymple-Alford JC (2006) Beyond spatial memory: the anterior thalamus and memory for the temporal order of a sequence of odor cues. J Neurosci 26:2907–2913

    Article  CAS  PubMed  Google Scholar 

  • Wolff M, Gibb SJ, Cassel JC, Dalrymple-Alford JC (2008a) Anterior but not intralaminar thalamic nuclei support allocentric spatial memory. Neurobiol Learn Mem 90:71–80. doi:10.1016/j.nlm.2008.01.007

    Article  PubMed  Google Scholar 

  • Wolff M, Loukavenko EA, Will BE, Dalrymple-Alford JC (2008b) The extended hippocampal-diencephalic memory system: enriched housing promotes recovery of the flexible use of spatial representations after anterior thalamic lesions. Hippocampus 18:996–1007. doi:10.1002/hipo.20457

    Article  PubMed  Google Scholar 

  • Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005) The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22:513–523. doi:10.1111/j.1460-9568.2005.04218.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS and the Conseil Régional d’Aquitaine. F. A. is supported by the Ministère de l’Enseignement Supérieur. We thank D. Panzeri, N. Argenta, and J. Huard for their help in animal care.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathieu Wolff or Etienne Coutureau.

Additional information

F. Alcaraz and F. Naneix contributed equally.

M. Wolff and E. Coutureau contributed equally as senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcaraz, F., Naneix, F., Desfosses, E. et al. Dissociable effects of anterior and mediodorsal thalamic lesions on spatial goal-directed behavior. Brain Struct Funct 221, 79–89 (2016). https://doi.org/10.1007/s00429-014-0893-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0893-7

Keywords

Navigation