Skip to main content
Log in

Connectivity-based parcellation of the macaque frontal cortex, and its relation with the cytoarchitectonic distribution described in current atlases

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Through its connectivity with the rest of the brain, a cortical region constrains its function. The advent of MRI methods such as diffusion-weighted imaging tractography allows us to estimate whole-brain anatomical connectivity at multiple seed regions in the same subject. This makes it possible to use data-driven techniques to define the spatial boundaries between adjacent brain regions characterized by sharply different connectivity. This approach has recently been employed to identify connectivity-based subdivisions of the human frontal lobe bearing an apparent similarity with cytoarchitectural subdivisions. However, the spatial relationships between the boundaries of cytoarchitectonic areas and tractography-based subdivisions remain largely hypothetical. In this work we present the first tractography-based parcellation of the frontal lobes in macaques. Diffusion-weighted data for tractography were acquired on ex vivo macaque brain specimens, ruling out the presence of various sources of noise present in acquisitions on living subjects. An unsupervised multivariate technique consistently showed the presence of 11 tractography-driven subdivisions in the frontal lobe across specimens. Comparison with several microstructural atlases suggested a heterogeneous relationship of these subdivisions with cytoarchitectonic areas: caudal frontal, medial and orbitofronal subdivisions featured the most consistent relationship between modalities, while lateral prefrontal subdivisions mostly differed from atlas-based cytoarchitectonic subdivisions. Other subdivisions were reminiscent of the organization of anatomical projections of the caudal motor cortex, as well as of the intrinsic orbitofrontal networks. Hence, although some cytoarchitectural and connectivity-based subdivisions share a similar spatial distribution, they should not necessarily be considered as equivalent. Instead, connectivity-based subdivisions appear to provide complementary information on the spatial organization of anatomical connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amunts K, Zilles K (2012) Architecture and organizational principles of Broca’s region. Trends Cogn Sci 16:418–426

    Article  PubMed  Google Scholar 

  • Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and inter-subject variability. J Comp Neurol 412:319–341

    Article  CAS  PubMed  Google Scholar 

  • Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd JM, Marshall JC, Shah NJ, Fink GR, Zilles K (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. Neuroimage 22:42–56

    Article  PubMed  Google Scholar 

  • Anwander A, Tittgemeyer M, von Cramon DY, Friederici AD, Knosche TR (2007) Connectivity-based parcellation of Broca’s area. Cereb Cortex 17:816–825

    Article  CAS  PubMed  Google Scholar 

  • Avants BB, Duda JT, Zhang H, Gee JC (2007) Multivariate normalization with symmetric diffeomorphisms for multivariate studies. Med Image Comput Comput Assist Interv 10:359–366

    CAS  PubMed  Google Scholar 

  • Averbeck BB, Seo M (2008) The statistical neuroanatomy of frontal networks in the macaque. PLoS Comput Biol 4:e1000050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbas H (1988) Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276:313–342

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  • Beckmann M, Johansen-Berg H, Rushworth MF (2009) Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J Neurosci 29:1175–1190

    Article  CAS  PubMed  Google Scholar 

  • Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34:144–155

    Article  CAS  PubMed  Google Scholar 

  • Bludau S, Eickhoff SB, Mohlberg H, Caspers S, Laird AR, Fox PT, Schleicher A, Zilles K, Amunts K (2014) Cytoarchitecture, probability maps and functions of the human frontal pole. Neuroimage 93(Pt 2):260–275

    Article  PubMed  Google Scholar 

  • Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt aud Grund des Zellenbaues. JA Barth, Leipzig

    Google Scholar 

  • Campbell AW (1905) Histological studies on the localisation of cerebral functions. Cambridge University Press, Cambridge

    Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448

    Article  PubMed  Google Scholar 

  • Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212:481–495

    Article  PubMed  Google Scholar 

  • Caspers S, Eickhoff SB, Zilles K, Amunts K (2013) Microstructural grey matter parcellation and its relevance for connectome analyses. Neuroimage 80:18–26

    Article  PubMed  Google Scholar 

  • Catani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P, Valabregue R, Thiebaut de Schotten M (2012) Short frontal lobe connections of the human brain. Cortex 48:273–291

    Article  PubMed  Google Scholar 

  • Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1(2):245–276

    Article  CAS  Google Scholar 

  • Chikama M, McFarland NR, Amaral DG, Haber SN (1997) Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci 17:9686–9705

    CAS  PubMed  Google Scholar 

  • Cloutman LL, Lambon Ralph MA (2012) Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography. Front Neuroanat 6:34

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Arceuil HE, Westmoreland S, de Crespigny AJ (2007) An approach to high resolution diffusion tensor imaging in fixed primate brain. Neuroimage 35:553–565

    Article  PubMed  Google Scholar 

  • de Crespigny AJ, D’Arceuil HE, Maynard KI, He J, McAuliffe D, Norbash A, Sehgal PK, Hamberg L, Hunter G, Budzik RF, Putman CM, Gonzalez RG (2005) Acute studies of a new primate model of reversible middle cerebral artery occlusion. J Stroke Cerebrovasc Dis 14:80–87

    Article  PubMed  Google Scholar 

  • Descoteaux M, Angelino E, Fitzgibbons S, Deriche R (2007) Regularized, fast, and robust analytical Q-ball imaging. Magn Reson Med 58:497–510

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens TE (2010) Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci 30:6409–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatterpekar GM, Naidich TP, Delman BN, Aguinaldo JG, Gultekin SH, Sherwood CC, Hof PR, Drayer BP, Fayad ZA (2002) Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 23:1313–1321

    PubMed  Google Scholar 

  • Ferry AT, Ongur D, An X, Price JL (2000) Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. J Comp Neurol 425:447–470

    Article  CAS  PubMed  Google Scholar 

  • Flechsig P (1901) Development (Myelogenetic) localisation of the cerebral cortex in the Human. The Lancet 158:1027–1030

    Article  Google Scholar 

  • Frey S, Pandya DN, Chakravarty MM, Bailey L, Petrides M, Collins DL (2011) An MRI based average macaque monkey stereotaxic atlas and space (MNI monkey space). Neuroimage 55:1435–1442

    Article  PubMed  Google Scholar 

  • Fuster JM (2002) Frontal lobe and cognitive development. J Neurocytol 31:373–385

    Article  PubMed  Google Scholar 

  • Gallay DS, Gallay MN, Jeanmonod D, Rouiller EM, Morel A (2011) The insula of reil revisited: multiarchitectonic organization in macaque monkeys. Cereb Cortex 22:175–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Gannon PJ, Kheck N, Hof PR (2008) Leftward interhemispheric asymmetry of macaque monkey temporal lobe language area homolog is evident at the cytoarchitectural, but not gross anatomic level. Brain Res 1199:62–73

    Article  CAS  PubMed  Google Scholar 

  • Gerbella M, Belmalih A, Borra E, Rozzi S, Luppino G (2007) Multimodal architectonic subdivision of the caudal ventrolateral prefrontal cortex of the macaque monkey. Brain Struct Funct 212:269–301

    Article  PubMed  Google Scholar 

  • Gerbella M, Belmalih A, Borra E, Rozzi S, Luppino G (2011) Cortical connections of the anterior (F5a) subdivision of the macaque ventral premotor area F5. Brain Struct Funct 216:43–65

    Article  PubMed  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174:I–VIII, 1–89

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Burgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Matelli M, Luppino G, Zilles K (2000) Functional neuroanatomy of the primate isocortical motor system. Anat Embryol (Berl) 202:443–474

    Article  CAS  Google Scholar 

  • Gharbawie OA, Stepniewska I, Kaas JH (2011) Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys. Cereb Cortex 21:1981–2002

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorbach NS, Schutte C, Melzer C, Goldau M, Sujazow O, Jitsev J, Douglas T, Tittgemeyer M (2011) Hierarchical information-based clustering for connectivity-based cortex parcellation. Front Neuroinform 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Graziano MS, Aflalo TN (2007) Mapping behavioral repertoire onto the cortex. Neuron 56:239–251

    Article  CAS  PubMed  Google Scholar 

  • Haak KB, Jbabdi S, Beckmann CF (2014) ConGrads! A framework for mapping connectivity gradients with resting-state FMRI. 20th Organization for Human Brain Mapping Conference, Hamburg, Germany

  • Haak KB, Marquand AF, Beckmann CF (2016) Connectopic mapping with resting-state fMRI. arXiv:1602.07100

  • Henssen A, Zilles K, Palomero-Gallagher N, Schleicher A, Mohlberg H, Gerboga F, Eickhoff SB, Bludau S, Amunts K (2016) Cytoarchitecture and probability maps of the human medial orbitofrontal cortex. Cortex 75:87–112

    Article  PubMed  Google Scholar 

  • Jbabdi S, Lehman JF, Haber SN, Behrens TE (2013) Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J Neurosci 33:3190–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jbabdi S, Sotiropoulos SN, Haber SN, Van Essen DC, Behrens TE (2015) Measuring macroscopic brain connections in vivo. Nat Neurosci 18:1546–1555

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62:782–790

    Article  PubMed  Google Scholar 

  • Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM, Smith SM, Higham DJ, Matthews PM (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci USA 101:13335–13340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DK (2003) Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn Reson Med 49:7–12

    Article  PubMed  Google Scholar 

  • Jones DK (2008) Studying connections in the living human brain with diffusion MRI. Cortex 44:936–952

    Article  PubMed  Google Scholar 

  • Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    Article  PubMed  Google Scholar 

  • Klein JC, Behrens TE, Robson MD, Mackay CE, Higham DJ, Johansen-Berg H (2007) Connectivity-based parcellation of human cortex using diffusion MRI: establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA. Neuroimage 34:204–211

    Article  PubMed  Google Scholar 

  • Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46:786–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Knosche TR, Tittgemeyer M (2011) The role of long-range connectivity for the characterization of the functional-anatomical organization of the cortex. Front Syst Neurosci 5:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214:519–534

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis JW, Van Essen DC (2000) Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J Comp Neurollew 428:112–137

    Article  CAS  Google Scholar 

  • Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338:114–140

    Article  CAS  PubMed  Google Scholar 

  • Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H (2014) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24:17–36

    Article  CAS  PubMed  Google Scholar 

  • Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TE, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MF (2011) Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF (2012) Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex 22:1894–1903

    Article  PubMed  Google Scholar 

  • Matelli M (2004) Motor Cortex. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 973–996

    Chapter  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav Brain Res 18:125–136

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462

    Article  CAS  PubMed  Google Scholar 

  • Mesulam M (2000) Principles of behavioural and cognitive neurology. Oxford University Press, Oxford

    Google Scholar 

  • Mesulam M (2002) The human frontal lobes: transcending the default mode through contingent encoding. In: Stuss DT, Knight RT (eds) Principles of frontal lobe function. Oxford University Press, Oxford, pp 8–30

    Chapter  Google Scholar 

  • Mesulam M (2012) The evolving landscape of human cortical connectivity: facts and inferences. Neuroimage 62:2182–2189

    Article  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1982) Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol 212:38–52

    Article  CAS  PubMed  Google Scholar 

  • Nanetti L, Cerliani L, Gazzola V, Renken R, Keysers C (2009) Group analyses of connectivity-based cortical parcellation using repeated k-means clustering. Neuroimage 47:1666–1677

    Article  PubMed  Google Scholar 

  • Neubert FX, Mars RB, Thomas AG, Sallet J, Rushworth MF (2014) Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81:700–713

    Article  CAS  PubMed  Google Scholar 

  • Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Article  CAS  PubMed  Google Scholar 

  • Ongur D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460:425–449

    Article  PubMed  Google Scholar 

  • Pandya DN, Yeterian EH (1996) Comparison of prefrontal architecture and connections. Philos Trans R Soc Lond B Biol Sci 351:1423–1432

    Article  CAS  PubMed  Google Scholar 

  • Passingham RE (2008) What is special about the human brain? Oxford University Press, Oxford

    Book  Google Scholar 

  • Passingham RE, Wise RJ (2012) The neurobiology of the prefrontal cortex. Oxford University Press, Oxford

    Book  Google Scholar 

  • Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–616

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Pandya DN (2002a) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310

    Article  CAS  PubMed  Google Scholar 

  • Petrides M, Pandya DN (2002b) Association pathways of the prefrontal cortex and functional observations. In: Stuss DT, Knight RT (eds) Principles of frontal lobe function. Oxford University Press, Oxford, pp 31–50

    Chapter  Google Scholar 

  • Petrides M, Tomaiuolo F, Yeterian EH, Pandya DN (2012) The prefrontal cortex: comparative architectonic organization in the human and the macaque monkey brains. Cortex 48:46–57

    Article  PubMed  Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474

    Article  CAS  PubMed  Google Scholar 

  • Rakic P, Suner I, Williams RW (1991) A novel cytoarchitectonic area induced experimentally within the primate visual cortex. Proc Natl Acad Sci USA 88:2083–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Cattaneo L, Fabbri-Destro M, Rozzi S (2014) Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol Rev 94:655–706

    Article  PubMed  Google Scholar 

  • Roberts TS, Akert K (1963) Insular and opercular cortex and its thalamic projection in Macaca mulatta. Schweiz Arch Neurol Neurochir Psychiatr 92:1–43

    CAS  PubMed  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2:1131–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallet J, Mars RB, Noonan MP, Andersson JL, O’Reilly JX, Jbabdi S, Croxson PL, Jenkinson M, Miller KL, Rushworth MF (2011) Social network size affects neural circuits in macaques. Science 334:697–700

    Article  CAS  PubMed  Google Scholar 

  • Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S, O’Reilly JX, Filippini N, Thomas AG, Rushworth MF (2013) The organization of dorsal frontal cortex in humans and macaques. J Neurosci 33:12255–12274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheperjans F, Eickhoff SB, Homke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18:2141–2157

    Article  PubMed  PubMed Central  Google Scholar 

  • Schubotz RI, Anwander A, Knosche TR, von Cramon DY, Tittgemeyer M (2010) Anatomical and functional parcellation of the human lateral premotor cortex. Neuroimage 50:396–408

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219

    Article  PubMed  Google Scholar 

  • Sotiropoulos SN, Aganj I, Jbabdi S, Sapiro C, Lenglet C, Behrens T (2011) Inference on constant solid angle orientation distribution functions from diffusion-weighted MRI. 17th Organization for Human Brain Mapping Conference, Quebec City, Canada

  • Sur M, Garraghty PE, Roe AW (1988) Experimentally induced visual projections into auditory thalamus and cortex. Science 242:1437–1441

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Urbanski M, Valabregue R, Bayle DJ, Volle E (2014) Subdivision of the occipital lobes: an anatomical and functional MRI connectivity study. Cortex 56:121–137

    Article  PubMed  Google Scholar 

  • Thiebaut de Schotten M, Urbanski M, Batrancourt B, Levy R, Dubois B, Cerliani L, Volle E (2016) Rostro-caudal architecture of the frontal lobes in humans. Cereb Cortex (in press)

  • Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci USA 111:16574–16579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomassini V, Jbabdi S, Klein JC, Behrens TE, Pozzilli C, Matthews PM, Rushworth MF, Johansen-Berg H (2007) Diffusion-weighted imaging tractography-based parcellation of the human lateral premotor cortex identifies dorsal and ventral subregions with anatomical and functional specializations. J Neurosci 27:10259–10269

    Article  CAS  PubMed  Google Scholar 

  • Tuch DS (2004) Q-ball imaging. Magn Reson Med 52:1358–1372

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, de Reus MA, Feldman Barrett L, Scholtens LH, Coopmans FM, Schmidt R, Preuss TM, Rilling JK, Li L (2015) Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome. Hum Brain Mapp 36:3064–3075

    Article  PubMed  Google Scholar 

  • Van Essen DC, Dierker DL (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56:209–225

    Article  PubMed  CAS  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere ergebnisse unserer hinforschungen. J Psychol Neurol Leipz 25:247–462

    Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Article  Google Scholar 

  • Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186

    Article  PubMed  Google Scholar 

  • Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Agence Nationale de la Recherche (grants number: ANR-13-JSV4-0001-01 and ANR-10-IAIHU-06). The authors wish to thank Alexandros Goulas, Alfred Anwander, Claude Bajada, Daniel Margulies, Koen Haak, Marcel Falkiewicz, Pierre Pouget for useful discussions during the preparation of the paper. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Cerliani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerliani, L., D’Arceuil, H. & Thiebaut de Schotten, M. Connectivity-based parcellation of the macaque frontal cortex, and its relation with the cytoarchitectonic distribution described in current atlases. Brain Struct Funct 222, 1331–1349 (2017). https://doi.org/10.1007/s00429-016-1280-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1280-3

Keywords

Navigation