Skip to main content
Log in

Pattern separation in the hippocampus: distinct circuits under different conditions

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Pattern separation is a fundamental hippocampal process thought to be critical for distinguishing similar episodic memories, and has long been recognized as a natural function of the dentate gyrus (DG), supporting autoassociative learning in CA3. Understanding how neural circuits within the DG-CA3 network mediate this process has received much interest, yet the exact mechanisms behind remain elusive. Here, we argue for the case that sparse coding is necessary but not sufficient to ensure efficient separation and, alternatively, propose a possible interaction of distinct circuits which, nevertheless, act in synergy to produce a unitary function of pattern separation. The proposed circuits involve different functional granule-cell populations, a primary population mediates sparsification and provides recurrent excitation to the other populations which are related to additional pattern separation mechanisms with higher degrees of robustness against interference in CA3. A variety of top-down and bottom-up factors, such as motivation, emotion, and pattern similarity, control the selection of circuitry depending on circumstances. According to this framework, a computational model is implemented and tested against model variants in a series of numerical simulations and biological experiments. The results demonstrate that the model combines fast learning, robust pattern separation and high storage capacity. It also accounts for the controversy around the involvement of the DG during memory recall, explains other puzzling findings, and makes predictions that can inform future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acsády L, Kamondi A, Sik A, Freund T, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18(9):3386–3403

    Article  PubMed  Google Scholar 

  • Aimone JB, Wiles J, Gage FH (2009) Computational influence of adult neurogenesis on memory encoding. Neuron 61(2):187–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alme C, Buzzetti R, Marrone D, Leutgeb J, Chawla M, Schaner M et al (2010) Hippocampal granule cells opt for early retirement. Hippocampus 20(10):1109–1123

    Article  PubMed  CAS  Google Scholar 

  • Aloisi A, Casamenti F, Scali C, Carli GPGG (1997) Effects of novelty, pain and stress on hippocampal extracellular acetylcholine levels in male rats. Brain Res 748(1–2):219–226

  • Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Amari S (1989) Characteristics of sparsely encoded associative memory. Neural Netw 2(6):451–457

    Article  Google Scholar 

  • Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13(2):222–238

    PubMed  CAS  Google Scholar 

  • Bakker A, Kirwan CB, Miller M, Stark CE (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319(5870):1640–1642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berron D, Schütze H, Cardenas-Blanco AMA, Kuijf HJ, Kumaran D, Düzel E (2016) Strong evidence for pattern separation in human dentate gyrus. J Neurosci 36(29):7569–7579

    Article  PubMed  CAS  Google Scholar 

  • Bijak M, Misgeld U (1995) Adrenergic modulation of hilar neuron activity and granule cell inhibition in the guinea-pig hippocampal slice. Neuroscience 67(3):541–550

    Article  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckmaster PS, Schwartzkroin PA (1994) Hippocampal mossy cell function: a speculative view. Hippocampus 4(4):393–402

    Article  PubMed  CAS  Google Scholar 

  • Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366(2):271–292

    Article  Google Scholar 

  • Chancey HJ, Poulsen DJ, Wadiche JI, Overstreet-Wadiche L (2014) Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci 34(6):2349–2354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott LK et al (2005) Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15(5):579–586

    Article  PubMed  CAS  Google Scholar 

  • Clelland C, Choi M, Romberg C, Clemenson GJ, Fragniere A, Tyers P et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crusio WE, Schwegler H (2005) Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice. Behav Brain Funct 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Daumas S, Halley H, Lassalle J-M (2004) Disruption of hippocampal CA3 network: effects on episodic-like memory processing in c57bl/6j mice. Eur J Neurosci 20(2):597–600

    Article  PubMed  Google Scholar 

  • Daumas S, Ceccom J, Halley H, Francés B, Lassalle J-M (2009) Activation of metabotropic glutamate receptor type 2/3 supports the involvement of the hippocampal mossy fiber pathway on contextual fear memory consolidation. Learn Mem 16(8):504–507

    Article  PubMed  Google Scholar 

  • de Almeida L, Idiart M, Lisman JE (2007) Memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations. Learn Mem 14(11):795–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Deller T, Martinez A, Nitsch R, Frotscher M (1996) A novel entorhinal projection to the rat dentate gyrus: direct innervation of proximal dendrites and cell bodies of granule cells and GABAergic neurons. J Neurosci 16(10):3322–3333

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Mayford M, Gage FH (2013) Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2:e00312

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieni C, Nietz AK, Panichi R, Wadiche J, Overstreet-Wadiche L (2013) Distinct determinants of sparse activation during granule cell maturation. J Neurosci 33(49):19131–19142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duffy AM, Schaner MJ, Chin J, Scharfman HE (2013) Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo. Hippocampus 23(8):649–655

    Article  CAS  Google Scholar 

  • Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44(1):109–120

    Article  Google Scholar 

  • Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470

    Article  PubMed  CAS  Google Scholar 

  • Galimberti I, Bednarek E, Donato F, Caroni P (2010) Epha4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus. Neuron 65(5):627–642

    Article  CAS  Google Scholar 

  • Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54(4):559–566

    Article  CAS  Google Scholar 

  • Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: double dissociation between dentate gyrus and ca1. Hippocampus 11(6):626–636

    Article  Google Scholar 

  • Gluck MA, Meeter M, Myers CE (2003) Computational models of the hippocampal region: linking incremental learning and episodic memory. Trends Cognit Sci 7(6):269–276

    Article  Google Scholar 

  • Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2008) The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. Behav Neurosci 122(1):16–26

    Article  PubMed  Google Scholar 

  • Harley CW (2007) Norepinephrine and the dentate gyrus. Prog Brain Res 163:299–318

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME, Wyble BP, Wallenstein GV (1996) Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus 6(6):693–708

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo ME, Bodelón C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput 14(4):793–817

    Article  PubMed  Google Scholar 

  • Hetherington PA, Austin KB, Shapiro ML (1994) Ipsilateral associational pathway in the dentate gyrus: an excitatory feedback system that supports N-methyl-d-aspartate-dependent long-term potentiation. Hippocampus 4(4):422–438

    Article  Google Scholar 

  • Hunsaker MR, Rosenberg JS, Kesner RP (2008) The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18(10):1064–1073

    Article  PubMed  Google Scholar 

  • Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from ca3 pyramidal cells in the rat. J Comp Neurol 295(4):580–623

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Scharfman HE (1996), Positive feedback ) from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J Neurophysiol 76(1):601–616

    Article  Google Scholar 

  • Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K et al. (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76(6):1189–1200

    Article  CAS  Google Scholar 

  • Kassab R, Alexandre F (2015) Integration of exteroceptive and interoceptive information within the hippocampus: a computational study. Front Syst Neurosci 5(9):87

    Google Scholar 

  • Kee N, Teixeira C, Wang A, Frankland P (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10(3):355–362

    Article  CAS  Google Scholar 

  • Kennedy PJ, Shapiro ML (2009) Motivational states activate distinct hippocampal representations to guide goal-directed behaviors. Proc Natl Acad Sci USA 106:10805–10810

    Article  Google Scholar 

  • Kleschevnikov AM, Routtenberg A (2003) Long-term potentiation recruits a trisynaptic excitatory associative network within the mouse dentate gyrus. Eur J Neurosci 17(12):2690–2702

    Article  Google Scholar 

  • Knoblauch A, Palm G, Sommer FT (2010) Memory capacities for synaptic and structural plasticity. Neural Comput 22(2):289–341

    Article  PubMed  Google Scholar 

  • Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71(3):512–528

    Article  CAS  Google Scholar 

  • Larimer P, Strowbridge BW (2008) Nonrandom local circuits in the dentate gyrus. J Neurosci 28(47):12212–12223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larimer P, Strowbridge BW (2010) Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat Neurosci 13(2):213–222

    Article  CAS  Google Scholar 

  • Lassalle JM, Bataille T, Halley H (2000) Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol Learn Mem 73(3):243–257

    Article  Google Scholar 

  • Leal SL, Tighe SK, Jones CK, Yassa MA (2014) Pattern separation of emotional information in hippocampal dentate and CA3. Hippocampus 24(9):1146–1155

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee I, Kesner RP (2004) Encoding versus retrieval of spatial memory: double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus 14(1):66–76

    Article  PubMed  Google Scholar 

  • Lee I, Hunsaker M, Kesner R (2005) The role of hippocampal subregions in detecting spatial novelty. Behav Neurosci 119(1):145–153

    Article  Google Scholar 

  • Leutgeb JK, Leutgeb S, Moser M-B, Moser EI (2007) Pattern separation in the dentate gyrus and ca3 of the hippocampus. Science 315(5814):961–966

    Article  PubMed  CAS  Google Scholar 

  • Li X, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal ca3 network: an in vivo intracellular labeling study. J Comp Neurol 339(2):181–208

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE (1999), Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentateCA3 interactions. Neuron 22(2):233–242

    Article  Google Scholar 

  • Lopez-Rojas J, Kreutz MR (2016) Mature granule cells of the dentate gyrus—passive bystanders or principal performers in hippocampal function. Neurosci Biobehav Rev 64:167–174

    Article  PubMed  Google Scholar 

  • Lysetskiy M, Földy C, Soltesz I (2005) Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus 15(6):691–696

    Article  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202(2):437–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond Ser B Biol Sci 262(841):23–81

    Article  CAS  Google Scholar 

  • McBain CJ (2008) Differential mechanisms of transmission and plasticity at mossy fiber synapses. Prog Brain Res 169:225–240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McHugh T, Jones M, Quinn J, Balthasar N, Coppari R, Elmquist J et al (2007) Dentate gyrus nmda receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99

    Article  PubMed  CAS  Google Scholar 

  • McNaughton BL, Nadel L (1990) Hebb-Marr networks and the neurobiological representation of action in space. In: Gluck MA, Rumelhart DE (eds) Neuroscience and connectionist theory. L. Erlbaum, Hillsdale, pp 1–64

    Google Scholar 

  • McNaughton BL, Barnes CA, Mizomori SY, Green EJ, Sharp PE (1991). The contribution of granule cells to spatial representation in hippocampal circuits: a puzzle. In: Morrell F (ed) Kindling and synaptic plasticity: the legacy of graham goddard. Springer, Boston, pp 110–123

    Google Scholar 

  • Morris RGM (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356(1413):1453–1465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moser EI, Moser EI (2003) One-shot memory in hippocampal CA3 networks. Neuron 38(2):147–148

    Article  PubMed  CAS  Google Scholar 

  • Myers CE, Scharfman HE (2009) A role for hilar cells in pattern separation in the dentate gyrus: a computational approach. Hippocampus 19(4):321–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21(11):1190–1215

    Article  Google Scholar 

  • Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ et al (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1):188–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus 4(6):661–682

    Google Scholar 

  • O’Reilly RC, Rudy JW (2001) Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev 108(2):311–345

    Article  PubMed  Google Scholar 

  • Restivo L, Niibori Y, Mercaldo V, Josselyn SA, Frankland PW (2015) Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J Neurosci 35(29):10600–10612

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE, Peterson GM (1991) Intragranular mossy fibers in rats and gerbils form synapses with the somata and proximal dendrites of basket cells in the dentate gyrus. Hippocampus 1(4):355–364

    Article  Google Scholar 

  • Rolls E (2013) The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci 7:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford

    Google Scholar 

  • Römer B, Krebs J, Overall RW, Fabel K, Babu H, Overstreet-Wadiche L et al (2011) Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: I. co-regulation by activity. Front Neurosci 5:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B et al (2011) Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473(7348):514–518

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11(6):1660–1673

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE (1994) Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. J Neurophysiol 72:2167–2180

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE, (1995) Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 74(1):179–194

    Article  Google Scholar 

  • Scharfman HE (2007) The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 163:627–637

    Google Scholar 

  • Scharfman HE (2016) The enigmatic mossy cell of the dentate gyrus. Nat Rev Neurosci 17(9):562–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scharfman H, Sollas A, Smith K, Jackson M, Goodman J (2002) Structural and functional asymmetry in the normal and epileptic rat dentate gyrus. J Comp Neurol 454(4):424–439

    Article  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Segal SK, Stark SM, Kattan D, Stark CE, Yassa MA (2012) Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation. Neurobiol Learn Mem 97(4):465–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Senzai Y, Buzsáki G (2017) Physiological properties and behavioral correlates of hippocampal granule cells and mossy cells. Neuron 93(3):691–704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seress L, Pokorny J (1981) Structure of the granular layer of the rat dentate gyrus. a light microscopic and golgi study. J Anat 133(Pt 2):181–195

    Google Scholar 

  • Toni N, Laplagne D, Zhao C, Lombardi G, Ribak C, Gage F et al (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11(8):901–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4(3):374–391

    Article  PubMed  CAS  Google Scholar 

  • Treves A, Tashiro A, Witter M, Moser E (2008) What is the mammalian dentate gyrus good for? Neuroscience 154(4):1155–1172

    Article  PubMed  CAS  Google Scholar 

  • Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of memory. Academic, New York, pp 382–402

    Google Scholar 

  • Vago D, Kesner R (2008) Disruption of the direct perforant path input to the ca1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 189(2):273–283

    Article  Google Scholar 

  • Weisz VI, Argibay PF (2009) A putative role for neurogenesis in neurocomputational terms: inferences from a hippocampal model. Cognition 112(2):229–240

    Article  PubMed  Google Scholar 

  • West M, Slomianka L, Gundersen H (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231(4):482–497

    Article  Google Scholar 

  • Wills T, Lever C, Cacucci F, Burgess N, O’Keefe J (2005) Attractor dynamics in the hippocampal representation of the local environment. Science 308(5723):873–876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) Non-holographic associative memory. Nature 222(5197):960–962

    Article  PubMed  CAS  Google Scholar 

  • Wiskott L, Rasch M, Kempermann G (2006) A functional hypothesis for adult hippocampal neurogenesis: avoidance of catastrophic interference in the dentate gyrus. Hippocampus 16(3):329–343

    Article  Google Scholar 

  • Witter MP (2010) Connectivity of the hippocampus. In: Cutsuridis V, Graham BP, Cobb S, Vida I (eds) Hippocampal microcircuits: a computational modelers resource book. Springer, New York, pp 5–26

    Chapter  Google Scholar 

  • Wittner L, Henze DA, Záborszky L, Buzsáki G (2006) Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons. Eur J Neurosci 24(5):1286–1298

    Article  PubMed  Google Scholar 

  • Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34(10):515–525

    Article  CAS  Google Scholar 

  • Yu E, Dengler C, Frausto S, Putt M, Yue C, Takano H et al (2013) Protracted postnatal development of sparse, specific dentate granule cell activation in the mouse hippocampus. J Neurosci 33(7):2947–2960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randa Kassab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Appendices

Appendix: Implementational details

Our model includes networks for the DG and CA3 regions of the hippocampus (Fig. 2). The cell numbers are scaled down to approximately 1/1000 the size of the rat hippocampus (West et al. 1991; Witter 2010): 1000 PPGC, 120 HGC and 120 MC in the DG; 300 PPCA3 and 50 HCA3 in CA3; and external inputs are provided by 200 neurons in the EC. The simulated neurons are simple points with continuous firing rates. The postsynaptic activity is computed as a function of the neuron’s membrane potential which evolves according to the sum of all excitatory and inhibitory synaptic inputs the neuron receives. The computations proceed in discrete time steps during which the activity of a homogeneous population of neurons is updated synchronously.

The DG network

All inputs from the EC cells to a PPGCi are summed up to a membrane potential, V i :

$${V_i}(t)=\mathop \sum \limits_{j} {W_{ij}}{\text{E}}{{\text{C}}_j}(t) - {I_{{\text{PPGC}}}}$$

where EC j is the activity of the jth EC cell; W ij refers to the synaptic weights between EC and PPGC; IPPGC is the amount of tonic inhibition in the DG which has been held constant at 0.75. At the beginning of each simulation run, W ij are initialized as random values drawn from a normal distribution with a mean of 1 and a standard deviation of 0.05 and are further normalized onto each PPGC.

Within each cluster, PPGC compete among themselves and only those receiving maximal excitation are driven to fire. The firing rate is given by:

$$PPG{C_i}(t)=\left\{ {\begin{array}{*{20}{l}} {\tanh\big( {\sigma {V_i}\left( t \right)} \big),~}&{{\text{if}}\;{V_i}\left( t \right)=\mathop {\arg \hbox{max} }\limits_{{k \in C}} \big( {{V_k}\left( t \right)} \big)} \\ {0,}&{{\text{otherwise}}} \end{array}} \right.$$

with σ is a constant defining the slope of the hyperbolic function and set to 0.1 for all PPGC, k is the index that labels PPGC belonging to the same cluster C as PPGC i .

In the hilus, the membrane potential of a MCi depends upon its two main inputs. The influence of PPGC input is computed in a way similar to that described for associative memories with binary neurons (Willshaw et al. 1969; Knoblauch et al. 2010):

$$V_{{\text{i}}}^{{{\text{(PPGC)}}}}(t)= \left\{\begin{aligned} &{V_i}=\mathop \sum \limits_{j} {W_{ij}}{\text{PPG}}{{\text{C}}_j}(t),&{\text{if}}\;{V_i} \geqslant \mathop \sum \limits_{j} {\text{PPG}}{{\text{C}}_j}(t) \\ &0,&\text{otherwise} \end{aligned} \right.$$

The weights of synapses that connect PPGC and MC are initially set to zero, and updated during learning according to the “clipped” Hebbian learning (Willshaw et al. 1969; Knoblauch et al. 2010), which means that W ij is changed from 0 to 1 when both presynaptic and postsynaptic cells are simultaneously active (MC i  > 0 and PPGC j  > 0) while further co-activations do not induce further changes.

The influence of CA3 backprojection on MC membrane potential is approximated by the summed activity of the whole population of PPCA3:

$$V_{i}^{{\left( {{\text{PPCA3}}} \right)}}\left( t \right)=G\Big( {\tanh\big( {\sigma \mathop \sum \limits_{j} {W_{ij}}{\text{PPCA}}{{\text{3}}_j}\left( t \right)} \big)} \Big)$$

Here, we assume a fully connected projection from PPCA3 to MC with all synaptic weights, W ij , are set to 1; σ is set to 0.1; and G(.) is a dual-thresholding function which implicitly defines the influence of PPCA3 on MC. Specifically, G(V i ) causes one of the high-threshold mossy cells, MCh, to be active if V i  > θh; or activates one of the low-threshold mossy cell, MCl, if θl < V i  ≤ θh; otherwise, CA3 backprojection has no influence on MC. This function also assigns 1/0 binary states to free vs. already recruited MC to ensure that a MC would be recruited only if it is not part of other previously-established memory traces. The default values for MC thresholds, θl and θh, are set to 0.1 and 0.5, respectively.

The firing rate of a MCi is then given by:

$${\text{M}}{{\text{C}}_i}\left( t \right)=\tanh\Big( {\sigma \big( V_{i}^{{\left( {{\text{PPGC}}} \right)}}\left( t \right)+V_{i}^{{\left( {{\text{PPCA3}}} \right)}}\left( t \right)}\big) \Big)$$

with σ is set to 10. The synaptic weights between MC and HGC are set to 1 and HGC are assumed to show equal responses as their presynaptic partners (HGC i (t) = MC i (t)).

The CA3 network

The activity of PPCA3 cells is driven by multiple excitatory and inhibitory inputs. During learning, PPGC mossy fiber inputs function as detonators for their PPCA3 targets provided that the latter are not under active inhibition from HGC/HCA3. The firing rate of a PPCA3 i is given by:

$${\text{PPCA}}{{\text{3}}_i}(t)=\left\{ {\begin{aligned} &{\tanh\big( {\mathop \sum \limits_{j} {W_{ij}}{\text{PPG}}{{\text{C}}_j}(t)} \big),~}&{{\text{if}}\;{I_i}=0} \\ & {0,}&{{\text{otherwise}}} \end{aligned}} \right.$$

With

$${I_i}=\mathop \sum \limits_{j} {Q_{ij}}{\text{HG}}{{\text{C}}_j}(t)+\mathop \sum \limits_{j} {Z_{ij}}{\text{HCA}}{{\text{3}}_j}(t)$$

Here, W ij refers to the synaptic weights of mossy fibers which are all equal to 1; I i refers to the summed inhibitory action that HGC and HCA3 might trigger onto PPCA3; all the weights of inhibitory synapses between HGC and PPCA3, Q ij , are initiated at 1, while the weights of inhibitory synapses between HCA3 and PPCA3, Z ij , are all initiated and maintained at 1. Learning occurs in CA3 by modifying the synaptic weights of EC-PPCA3 and PPCA3-PPCA3 connections according to clipped Hebbian learning and by setting the synaptic weights of the inhibitory connections between co-active HGC and PPCA3 cells to zero.

During recall, PPGC inputs are disabled. PPCA3 receive excitatory drives from the perforant path and recurrent projections, but may also undergo strong inhibition from local interneurons; HCA3 are only responsive to drive from HGC:

$${\text{PPCA}}{{\text{3}}_i}(t)=\left\{ { \begin{aligned} &\tanh \Big( \sigma \big( \mathop \sum \limits_{j} W_{{ij}}^{{{\text{PP}}}}{\text{E}}{{\text{C}}_j}(t) &\\ &+\mathop \sum \limits_{k} W_{{ik}}^{{{\text{RC}}}}{\text{PPCA}}{{\text{3}}_k}(t - 1)- {I_{{\text{PPCA3}}}}(t) \big) \Big), & \quad{{\text{if}}\;{I_i}=0} \\ &{0,~}&\quad{{\text{otherwise}}} \end{aligned}} \right.$$

with

$${I_{{\text{PPCA3}}}}=\mu \big( {\mathop \sum \limits_{j} {\text{E}}{{\text{C}}_j}(t)+\mathop \sum \limits_{k} {\text{PPCA}}{{\text{3}}_k}(t - 1)} \big)$$

and

$${\text{HCA}}{{\text{3}}_i}(t)={\text{HG}}{{\text{C}}_i}(t)$$

Again, I i refers to the amount of inhibition arising from HGC/HCA3 on PPCA3 i ; \(W_{{ij}}^{{{\text{PP}}}}\) and \(W_{{ik}}^{{{\text{RC}}}}\) are respectively the synaptic weights of EC-PPCA3 and PPCA3-PPCA3 connections; IPPCA3 is the amount of inhibition that depends on incoming activity from the EC and CA3 itself; µ is a constant which has been set to 0.2. The activity of PPCA3 is computed repeatedly until the network settles into a steady state or until a maximum of 10 iterations is reached.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassab, R., Alexandre, F. Pattern separation in the hippocampus: distinct circuits under different conditions. Brain Struct Funct 223, 2785–2808 (2018). https://doi.org/10.1007/s00429-018-1659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1659-4

Keywords

Navigation