Skip to main content

Advertisement

Log in

Evaluation of parasitological and immunological parameters of Leishmania chagasi infection in BALB/c mice using different doses and routes of inoculation of parasites

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Experimental vaccines to protect against visceral leishmaniasis (VL) have been developed by using BALB/c mice infected with a large (107 to 108) inoculum of parasites. Remarkably, prior literature has reported that the poor protection observed is mainly due to the high susceptibility of this strain. To determine factors inherent to mice that might abrogate vaccine-induced efficacy, the present research sought to investigate the impact of the administration of different infective inoculums of Leishmania chagasi (syn. L. infantum) in BALB/c mice, evaluating subcutaneous and intravenous routes of administration as well as parasitological and immunological parameters over different periods of time. This study shows that the injection of a highly infective inoculum in mice, through both subcutaneous and intravenous routes, results in a sustained infection. The mice developed a high parasite load in the liver; however, these values diminished over time. This result did not corroborate with the parasite load in the bone marrow and brain and proved to be expressively different in the spleen and draining lymph nodes, where the values increased over time. Mice infected with a low dose of parasites (103) showed a certain resistance against infection, based mainly on the IFN-γ and oxide nitric production. Considering all the elements, it could be concluded that the models employing high doses (107) of L. chagasi in BALB/c mice can bring about an imbalance in the animals’ immune response, thus allowing for the development of the disease at the expense of efficacy within the vaccine candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu-Silva AL, Calabrese KS, Tedesco RC, Mortara RA, Costa SCG (2003) Central nervous system involvement in experimental infection with Leishmania (Leishmania) amazonensis. Am J Trop Med Hyg 68:661–665

    PubMed  CAS  Google Scholar 

  • Afonso LC, Scott P (1993) Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infect Immun 61:2952–2959

    PubMed  CAS  Google Scholar 

  • Afrin F, Anam K, Ali N (2000) Induction of partial protection against Leishmania donovani by promastigoyes antigens in negatively charged liposomes. J Parasitol 89:730–735

    Google Scholar 

  • Ahmed S, Colmenares M, Soong L, Goldsmith-Pestana K, Munstermann L, Molina R, McMahon-Pratt D (2003) Intradermal infection model for pathogenesis and vaccine studies of murine visceral leishmaniasis. Infect Immun 71:401–410

    Article  PubMed  CAS  Google Scholar 

  • Barral A, Pedral-Sampaio D, Grimaldi G Jr, Momen H, McMahon-Pratt D, Ribeiro-de-Jesus A, Almeida R, Badaró R, Barral-Netto M, Carvalho EM, Johnson WD Jr (1991) Leishmaniasis in Bahia, Brazil: evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. Am J Trop Med Hyg 44:536–546

    PubMed  CAS  Google Scholar 

  • Basu R, Bhaumik S, Haldar AK, Naskar K, De T, Dana SK, Walden P, Roy S (2007) Hybrid cell vaccination resolves Leishmania donovani infection by eliciting a strong CD8+ cytotoxic T-lymphocyte response with concomitant suppression of interleukin-10 (IL-10) but not IL-4 or IL-13. Infect Immun 75:5956–5966

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Ghosh S, Jhonson PL, Bhattacharya SK, Majumdar S (2001) Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events. Infect Immun 69:1499–1507

    Article  PubMed  CAS  Google Scholar 

  • Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H (1992) Establishment of stable, cell mediated immunity that makes “susceptible” mice resistant to Leishmania major. Science 257:539–542

    Article  PubMed  CAS  Google Scholar 

  • Carrión J, Nieto A, Iborra S, Iniesta V, Soto M, Folgueira C, Abanades DR, Requena JM, Alonso C (2006) Immunohistological features of visceral leishmaniasis in BALB/c mice. Parasite Immunol 28:173–183

    Article  PubMed  Google Scholar 

  • Coelho EA, Tavares CA, Carvalho FA, Chaves KF, Teixeira KN, Rodrigues RC, Charest H, Matlashewski G, Gazzinelli RT, Fernandes AP (2003) Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infect Immun 71:988–994

    Article  Google Scholar 

  • Engwerda CR, Kaye PM (2000) Organ-specific immune responses associated with infectious disease. Immunol Today 21:73–78

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Alonso M, Nieto CG, Blanco A, Requena JM, Alonso C, Navarrete I (1996) Presence of antibodies in the aqueous humour and cerebrospinal fluid during Leishmania infections in dogs. Pathological features at the central nervous system. Parasite Immunol 18:539–546

    Article  PubMed  CAS  Google Scholar 

  • Garg R, Dube A (2006) Animal models for vaccine studies for visceral leishmaniasis. Indian J Med Res 123:439–454

    PubMed  Google Scholar 

  • Himmelrich H, Launois P, Maillard I, Biedermann T, Tacchini-Cottier F, Locksley RM (2000) In BALB/c mice, IL-4 production during the initial phase of infection with Leishmania major is necessary and sufficient to instruct Th2 cell development resulting in progressive disease. J Immunol 164:4819–4825

    PubMed  CAS  Google Scholar 

  • Iniesta V, Gomez-Nieto LC, Corraliza I (2001) The inhibition of arginase by N(omega)-hydroxy-1-arginine controls the growth of Leishmania inside macrophages. J Exp Med 193:777–784

    Article  PubMed  CAS  Google Scholar 

  • Iniesta V, Gómez-Nieto LC, Molano I, Mohedano A, Carcelén J, Mirón C, Alonso C, Corraliza I (2002) Arginase I induction in macrophages, triggered by Th2-type cytokines, supports the growth of intracellular Leishmania parasites. Parasite Immunol 24:113–118

    Article  PubMed  CAS  Google Scholar 

  • Kaur S, Kaur T, Garg N, Mukherjee S, Raina P, Athokpam V (2008) Effect of dose and route of inoculation on the generation of CD4+ Th1/Th2 type of immune response in murine visceral leishmaniasis. Parasitol Res 103:1413–1419

    Article  PubMed  Google Scholar 

  • Kaye PM, Gorak P, Murphy M, Ross S (1995) Strategies for immune intervention in visceral leishmaniasis. Ann Trop Med Parasitol 89:75–81

    PubMed  Google Scholar 

  • Keenan CM, Hendricks LD, Lightner L, Johnson AJ (1984) Visceral leishmaniasis in the German shepherd dog. I. Infection, clinical disease, and clinical pathology. Vet Pathol 21:74–79

    PubMed  CAS  Google Scholar 

  • Lehmann J, Enssle KH, Lehmann I, Emmendorfer A, Lohmann-Matthes ML (2000) The capacity to produce IFN-gamma rather than the presence of interleukin-4 determines the resistance and the degree of susceptibility to Leishmania donovani infection in mice. J Interferon Cytokine Res 20:63–77

    Article  PubMed  CAS  Google Scholar 

  • Malafaia G, Serafim TD, Silva ME, Pedrosa ML, Rezende SA (2009) Protein–energy malnutrition decreases immune response to Leishmania chagasi vaccine in BALB/c mice. Parasite Immunol 3:41–49

    Article  Google Scholar 

  • McMahon-Pratt D, Alexander J (2004) Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniasis or the visceral disease? Immunol Rev 201:206–224

    Article  PubMed  Google Scholar 

  • Melby PC, Yang YZ, Cheng J, Zhao W (1998) Regional differences in the cellular immune response to experimental cutaneous or visceral infection with Leishmania donovani. Infect Immun 66:18–27

    PubMed  CAS  Google Scholar 

  • Melby PC, Tabares A, Restrepo BI, Cardona AE, McGuff HS, Teale JM (2001a) Leishmania donovani: evolution and architecture of the splenic cellular immune response related to control of infection. Exp Parasitol 99:17–25

    Article  PubMed  CAS  Google Scholar 

  • Melby PC, Chandrasekar B, Zhao W, Coe JE (2001b) The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent th1-like cytokine response. J Immunol 166:1912–1920

    PubMed  CAS  Google Scholar 

  • Muigai R, Gatei DG, Shaunak S, Wozniak A, Bryceson AD (1983) Jejunal function and pathology in visceral leishmaniasis. Lancet 2:476–479

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Ghosh AK, Ghose AC (2003) Infection pattern and immune response in the spleen and liver of BALB/c mice intracardially infected with Leishmania donovani amastigotes. Immunol Letters 86:131–138

    Article  PubMed  CAS  Google Scholar 

  • Murphy ML, Wille U, Villegas EN, Hunter CA, Farrell JP (2001) IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol 31:2848–2856

    Article  PubMed  CAS  Google Scholar 

  • Murray HW, Stern JJ, Welte K, Rubin BY, Carriero SM, Nathan CF (1987) Experimental visceral leishmaniasis: production of interleukin 2 and interferon-gamma, tissue immune reaction, and response to treatment with interleukin-2 and interferon-gamma. J Immunol 138:2290–2297

    PubMed  CAS  Google Scholar 

  • Murray HW, Squires KE, Miralles CD, Stoeckle MY, Granger AM, Granelli-Piperno A, Bogdan C (1992) Acquired resistance and granuloma formation in experimental visceral leishmaniasis. Differential T cell and lymphokine roles in initial versus established immunity. J Immunol 148:1858–1863

    PubMed  CAS  Google Scholar 

  • Nieto CG, Viñuelas J, Blanco A, Garcia-Alonso M, Verdugo SG, Navarrete I (1996) Detection of Leishmania infantum amastigotes in canine choroid plexus. Vet Rec 139:346–347

    Article  PubMed  CAS  Google Scholar 

  • Peters N, Sacks D (2006) Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunol Rev 213:159–179

    Article  PubMed  CAS  Google Scholar 

  • Prasad LS, Sen S (1996) Migration of Leishmania donovani amastigotes in the cerebrospinal fluid. Am J Trop Med Hyg 55:652–654

    PubMed  CAS  Google Scholar 

  • Ramos CC, Duarte MI, Ramos AM (1994) Fatal visceral leishmaniasis associated with acquired immunodeficiency syndrome: report of a case with necropsy findings and immunohistochemical study. Rev Soc Bras Med Trop 27:245–250

    PubMed  CAS  Google Scholar 

  • Requena JM, Iborra S, Carrion J, Alonso C, Soto M (2004) Recent advances in vaccines for leishmaniasis. Expert Opin Biol Theraphy 4:1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Rhodes SG, Graham SP (2002) Is ‘timing’ important for cytokine polarization? Trends Immunol 23:246–249

    Article  PubMed  CAS  Google Scholar 

  • Rolao N, Melo C, Campino L (2004) Influence of the inoculation route in BALB/c mice infected by Leishmania infantum. Acta Trop 90:123–126

    Article  PubMed  Google Scholar 

  • Sacks DL, Melby PC (2001) Animal models for the analysis of immune responses to leishmaniasis. Curr Protoc Immunol 19:Unit 19.2

  • Stäger S, Joshi T, Bankoti R (2010) Immune evasive mechanisms contributing to persistent Leishmania donovani infection. Immunol Res 47:14–24

    Google Scholar 

  • Toumanen E (1996) Entry of pathogens into the central nervous system. FEMS Microbiol Rev 18:289–299

    Article  Google Scholar 

  • Vieira LQ, Goldschmidt M, Nashleanas M, Pfeffer K, Mak T, Scott P (1996) Mice lacking the TNF receptor p55 fail to resolve lesions caused by infection with Leishmania major, but control parasite replication. J Immunol 157:827–835

    PubMed  CAS  Google Scholar 

  • Viñuelas J, Garcia-Alonso M, Fernando L, Navarrete I, Molano I, Mirón C, Carcelén J, Alonso C, Nieto CG (2001) Meningeal leishmaniosis induced by Leishmania infantum in naturally infected dogs. Vet Parasitol 101:23–27

    Article  PubMed  Google Scholar 

  • Wilson ME, Jeronimo SM, Pearson RD (2005) Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog 38:147–160

    Article  PubMed  CAS  Google Scholar 

  • Yazdanbakhsh M, Sacks DL (2010) Why does immunity to parasites take so long to develop? Nat Rev Immunol 10:80–81

    Article  PubMed  CAS  Google Scholar 

  • Zanin FH, Coelho EA, Tavares CA, Marques-da-Silva EA, Costa MMS, Rezende SA, Gazzinelli RT, Fernandes AP (2007) Evaluation of immune responses and protection induced by A2 and nucleoside hydrolase (NH) DNA vaccines against Leishmania chagasi and Leishmania amazonensis experimental infections. Microbes Infect 9:1070–1077

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Pró-Reitoria de Pesquisa from UFMG (Edital 08/2011), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG; CBB-APQ-01322-08), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; APQ-577483/2008-0), and Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica (INCT/Nano-BIOFAR), CNPq. DGV and EAFC are grant recipients of CNPq, while DMO, MAFC, and MACF are grant recipients of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Antonio F. Coelho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, D.M., Costa, M.A.F., Chavez-Fumagalli, M.A. et al. Evaluation of parasitological and immunological parameters of Leishmania chagasi infection in BALB/c mice using different doses and routes of inoculation of parasites. Parasitol Res 110, 1277–1285 (2012). https://doi.org/10.1007/s00436-011-2628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2628-5

Keywords

Navigation