Skip to main content

Advertisement

Log in

Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study aimed to investigate the in vitro antileishmanial activity of strychnobiflavone flavonoid against Leishmania infantum, as well as its mechanism of action, and evaluate the ex vivo biodistribution profile of the flavonoid in naive BALB/c mice. The antileishmanial activity (IC50 value) of strychnobiflavone against stationary promastigote and amastigote-like stages of the parasites was of 5.4 and 18.9 μM, respectively; with a 50% cytotoxic concentration (CC50) value of 125.0 μM on murine macrophages, resulting in selectivity index (SI) of 23.2 and 6.6, respectively. Amphotericin B, used as a positive control, presented SI values of 7.6 and 3.3 for promastigote and amastigote-like stages of L. infantum, respectively. The strychnobiflavone was also effective in reducing in significant levels the percentage of infected macrophages, as well as the number of amastigotes per macrophage, after the treatment of infected macrophages using the flavonoid. By using different fluorescent probes, we investigated the bioenergetics metabolism of L. infantum promastigotes and demonstrated that the flavonoid caused the depolarization of the mitochondrial membrane potential, without affecting the production of reactive oxygen species. In addition, using SYTOX® green as a fluorescent probe, the strychnobiflavone demonstrated no interference in plasma membrane permeability. For the ex vivo biodistribution assays, the flavonoid was labeled with technetium-99m and studied in a mouse model by intraperitoneal route. After a single dose administration, the scintigraphic images demonstrated a highest uptake by the liver and spleen of the animals within 60 min, resulting in low concentrations after 24 h. The present study therefore demonstrated, for the first time, the antileishmanial activity of the strychnobiflavone against L. infantum, and suggests that the mitochondria of the parasites may be the possible target organelle. The preferential distribution of this compound into the liver and spleen of the animals could warrant its employ in the treatment of visceral leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvar J, Cañavate C, Gutiérrez-Solar B, Jiménez M, Laguna F, López-Vélez R, Molina R, Moreno J (1997) Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 10:298–319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, WHO Leishmaniasis Control Team (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:0035671. doi:10.1371/journal.pone.0035671

    Article  Google Scholar 

  • Andrade-Neto VF, Brandão MGL, Stehmann JR, Oliveira LA, Krettli AU (2003) Antimalarial activity of Cinchona-like plants used to treat fever and malaria in Brazil. J Ethnopharmacol 87:253–256. doi:10.1016/S0378-8741(03)00141-7

    Article  CAS  PubMed  Google Scholar 

  • Annaloro C, Olivares C, Usardi P, Onida F, Della Volpe A, Tagliaferri E, Deliliers GL (2009) Retrospective evaluation of amphotericin B deoxycholate toxicity in a single centre series of haematopoietic stem cell transplantation recipients. J Antimicrob Chemother 63:625–626. doi:10.1093/jac/dkn549

    Article  CAS  PubMed  Google Scholar 

  • Ashford RW (2000) The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol 30:1269–1281. doi:10.1016/S0020-7519(00)00136-3

    Article  CAS  PubMed  Google Scholar 

  • Bern C, Adler-Moore J, Berenguer J, Boelaert M, den Boer M, Davidson RN, Figueras C, Gradoni L, Kafetzis DA, Ritmeijer K, Rosenthal E, Royce C, Russo R, Sundar S, Alvar J (2006) Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis 43:917–924. doi:10.1086/507530

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Jha TK, Sundar S, Thakur CP, Engel J, Sindermann H, Junge K, Karbwang J, Bryceson AD, Berman JD (2004) Efficacy and tolerability of miltefosine for childhood visceral leishmaniasis in India. Clin Infect Dis 38:217–221. doi:10.1086/380638

    Article  CAS  PubMed  Google Scholar 

  • Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11:733–740. doi:10.1097/MCO.0b013e32831394b8

    Article  CAS  PubMed  Google Scholar 

  • Butler MS (2005) Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep 22:162–195. doi:10.1039/b402985m

    Article  CAS  PubMed  Google Scholar 

  • Carvalho L, Luque-Ortega JR, Manzano JI, Castanys S, Rivas L, Gamarro F (2010) Tafenoquine, an antiplasmodial 8-aminoquinoline, targets Leishmania respiratory complex III and induces apoptosis. Antimicrob Agents Chemother 54:5344–5351. doi:10.1128/AAC.00790-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882. doi:10.1038/nrmicro1748

    Article  CAS  PubMed  Google Scholar 

  • Coelho EAF, Tavares CAP, Carvalho FAA, Chaves KF, Teixeira KN, Rodrigues RC, Charest H, Matlashewski G, Gazzinelli RT, Fernandes AP (2003) Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infect Immun 71:3988–3994. doi:10.1128/IAI.71.7.3988-3994.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coimbra ES, Gonçalves-da-Costa SC, Corte-Real S, De Freitas FG, Durão AC, Souza CS, Silva-Santos MI, Vasconcelos EG (2002) Characterization and cytochemical localization of an ATP diphosphohydrolase from Leishmania amazonensis promastigotes. Parasitology 124:137–143. doi:10.1017/S0031182001001056

    Article  CAS  PubMed  Google Scholar 

  • Correa MP (1952) Dicionário das plantas úteis do Brasil e exóticas cultivadas, 3rd edn. Rio de Janeiro

  • Cota GF, de Sousa MR, de Mendonça ALP, Patrocinio A, Assunção LS, de Faria SR, Rabello A (2014) Leishmania-HIV Co-infection: clinical presentation and outcomes in an urban area in Brazil. PLoS Negl Trop Dis 8:2–8. doi:10.1371/journal.pntd.0002816

    Article  Google Scholar 

  • Croft SL, Coombs GH (2003) Leishmaniasis: current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    Article  CAS  PubMed  Google Scholar 

  • De Muylder G, Ang KKH, Chen S, Arkin MR, Engel JC, McKerrow JH (2011) A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl Trop Dis. doi: 10.1371/journal.pntd.0001253

  • De Souza W, Attias M, Rodrigues JCF (2009) Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 41:2069–2080. doi:10.1016/j.biocel.2009.04.007

    Article  PubMed  Google Scholar 

  • Delorenzi J, Attias M (2001) Antileishmanial activity of an indole alkaloid Frompeschiera australis. Antimicrob Agents 45:1349–1354. doi:10.1128/AAC.45.5.1349

    Article  CAS  Google Scholar 

  • Diaz-Achirica P, Ubach J, Guinea A, Andreu D, Rivas L (1998) The plasma membrane of Leishmania donovani promastigotes in the main target for CA (1-8)M(1-18), a synthetic cecropin A-melittin hybrid peptide. Biochem J 330:453–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597. doi:10.1093/jac/dks275

    Article  CAS  PubMed  Google Scholar 

  • Doyle PS, Engel JC, Pimenta PF, da Silva PP, Dwyer DM (1991) Leishmania donovani: long-term culture of axenic amastigotes at 37oC. Exp Parasitol 73:326-334. doi:10.1016/0014-4894(91)90104-5

  • Egger SS, Meier S, Leu C, Christen S, Gratwohl A, Krähenbühl S, Haschke M (2010) Drug interactions and adverse events associated with antimycotic drugs used for invasive aspergillosis in hematopoietic SCT. Bone Marrow Transplant 45:1197–1203. doi:10.1038/bmt.2009.325

    Article  CAS  PubMed  Google Scholar 

  • Escobar P, Matu S, Marques CNH, Croft SL (2002) Sensitivities of Leishmania species to (edelfosine) and amphotericin B. Acta Trop 81:151–157. doi:10.1016/S0001-706X(01)00197-8

    Article  CAS  PubMed  Google Scholar 

  • Fidalgo LM, Gille L (2011) Mitochondria and trypanosomatids: targets and drugs. Pharm Res 28:2758–2770. doi:10.1007/s11095-011-0586-3

    Article  CAS  PubMed  Google Scholar 

  • Fonseca-Silva F, Inacio JDF, Canto-Cavalheiro MM, Almeida-Amaral EE (2011) Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PLoS One. doi: 10.1371/journal.pone.0014666

  • Fumarola L, Spinelli R, Brandonisio O (2004) In vitro assays for evaluation of drug activity against Leishmania spp. Res Microbiol 155:224–230. doi:10.1016/j.resmic.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  • Goto H (2012) Review of the current treatments for leishmaniases. Res Rep Trop Med 69. doi: 10.2147/RRTM.S24764

  • Grevelink SA, Lerner EA (1996) Leishmaniasis. J Am Acad Dermatol 34:257–272

    Article  CAS  PubMed  Google Scholar 

  • Inacio JDF, Canto-Cavalheiro MM, Rubem RF, Almeida-Amaral EE (2012) Mitochondrial damage contribute to epigallocatechin-3-gallate induced death in Leishmania amazonensis. Exp Parasitol 132:151–155. doi:10.1016/j.exppara.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  • Khaliq T, Misra P, Gupta S, Reddy KP, Kant R, Maulik PR, Dube A, Narender T (2009) Peganine hydrochloride dihydrate an orally active antileishmanial agent. Bioorganic Med Chem Lett 19:2585–2586. doi:10.1016/j.bmcl.2009.03.039

    Article  CAS  Google Scholar 

  • Lage PS, De Andrade PHR, Lopes ADS, Chávez Fumagalli MA, Valadares DG, Duarte MC, Pagliara Lage D, Costa LE, Martins VT, Ribeiro TG, Filho JD, Tavares CA, de Pádua RM, Leite JP, Coelho EA (2013) Strychnos pseudoquina and its purified compounds present an effective in vitro antileishmanial activity. Evidence-based Complement Altern Med 1–9. doi: 10.1155/2013/304354

  • Lainson R (1983) The American leishmaniases: some observations epidemiology and epidemiology. Trans R Soc Trop Med Hyg 77:569–596

    Article  CAS  PubMed  Google Scholar 

  • Lainson R, Shaw JJ (2010) New World leishmaniasis. Topley and Wilson’s Microbiology and Microbial Infections.

  • Liu KCSC, Yang SL, Roberts MF, Elford BC, Phillipson JD (1992) Antimalarial activity of Artemisia annua flavonoids from whole plants and cell cultures. Plant Cell Rep 11:637–640. doi:10.1007/BF00236389

    Article  CAS  PubMed  Google Scholar 

  • Luque-Ortega JR, Rivero-Lezcano OM, Croft SL, Rivas L (2001) In vivo monitoring of intracellular atp levels in Leishmania donovani promastigotes as a rapid method to screen drugs targeting bioenergetic metabolism. Antimicrob Agents Chemother 45:1121–1125. doi:10.1128/AAC.45.4.1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mamani-Matsuda M, Malvy D, Thiolat D, Lejoly-Boisseau H, Daulouède S, Thiolat D, Coves S, Courtois P, Vincendeau P, Mossalayi MD (2004) Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob Agents Chemother 48:924–929. doi:10.1128/AAC.48.3.924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marín C, Boutaleb-Charki S, Díaz JG, Huertas O, Rosales MJ, Pérez-Cordon G, Guitierrez-Sánchez R, Sánchez-Moreno M (2009) Antileishmaniasis activity of flavonoids from Consolida oliveriana. J Nat Prod 72:1069–1074. doi:10.1021/np8008122

    Article  PubMed  Google Scholar 

  • Mead JR, McNair N (2006) Antiparasitic activity of flavonoids and isoflavones against Cryptosporidium parvum and Encephalitozoon intestinalis. FEMS Microbiol Lett 259:153–157. doi:10.1111/j.1574-6968.2006.00263.x

    Article  CAS  PubMed  Google Scholar 

  • Mehta A, Shaha C (2006) Mechanism of metalloid-induced death in Leishmania spp.: role of iron, reactive oxygen species, Ca2+, and glutathione. Free Radic Biol Med 40:1857–1868. doi:10.1016/j.freeradbiomed.2006.01.024

    Article  CAS  PubMed  Google Scholar 

  • Menna-Barreto RFS, Goncalves RLS, Costa EM, Silva RS, Pinto AV, Oliveira MF, de Castro SL (2009) The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction. Free Radic Biol Med 47:644–653. doi:10.1016/j.freeradbiomed.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  • Mesquita JT, Pinto EG, Taniwaki NN, Galisteo AJ Jr, Tempone AG (2013) Lethal action of the nitrothiazolyl-salicylamide derivative nitazoxanide via induction of oxidative stress in Leishmania (L.) infantum. Acta Trop 128:666–673. doi:10.1016/j.actatropica.2013.09.018

    Article  CAS  PubMed  Google Scholar 

  • Minodier P, Parola P (2007) Cutaneous leishmaniasis treatment. Travel Med Infect Dis 5:150–158. doi:10.1016/j.tmaid.2006.09.004

    Article  PubMed  Google Scholar 

  • Mondal D, Singh SP, Kumar N, Joshi A, Sundar S, Das P, Siddhivinayak H, Kroeger A, Boelaert M (2009) Visceral leishmaniasis elimination programme in India, Bangladesh, and Nepal: reshaping the case finding/case management strategy. PLoS Negl Trop Dis 3:e355. doi:10.1371/journal.pntd.0000355

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore JWJ, Moyo D, Beattie L, Andrews PS, Timmis J, Kaye PM (2013) Functional complexity of the Leishmania granuloma and the potential of in silico modeling. Front Immunol 4:1–7. doi:10.3389/fimmu.2013.00035

    Article  CAS  Google Scholar 

  • Mukherjee P, Majee SB, Ghosh S, Hazra B (2009) Apoptosis-like death in Leishmania donovani promastigotes induced by diospyrin and its ethanolamine derivative. Int J Antimicrob Agents 34:596–601. doi:10.1016/j.ijantimicag.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  • Murray HW (2001) Tissue granuloma structure-function in experimental visceral leishmaniasis. Int J Exp Pathol 82:249–267. doi:10.1046/j.1365-2613.2001.00199.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Newman D, Cragg G, Snader K (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037. doi:10.1021/np030096l

    Article  CAS  PubMed  Google Scholar 

  • Obonaga R, Fernández OL, Valderrama L, Rubiano LC, Castro Mdel M, Barrera MC, Gomez MA, Gore Saravia N (2014) Treatment failure and miltefosine susceptibility in dermal leishmaniasis caused by Leishmania subgenus viannia species. Antimicrob Agents Chemother 58:144–152. doi:10.1128/AAC.01023-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Oliveira DM, Costa MAF, Chavez-Fumagalli MA, Valadares DG, Duarte MC, Costa LE, Martins VT, Gomes RF, Melo MN, Soto M, Tavares CA, Coelho EA (2012) Evaluation of parasitological and immunological parameters of Leishmania chagasi infection in BALB/c mice using different doses and routes of inoculation of parasites. Parasitol Res 110:1277–1285. doi:10.1007/s00436-011-2628-5

    Article  PubMed  Google Scholar 

  • Osorio E, Arango GJ, Jiménez N, Alzate F, Ruiz G, Gutiérrez D, Paco MA, Giménez A, Robledo S (2007) Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. J Ethnopharmacol 111:630–635. doi:10.1016/j.jep.2007.01.015

    Article  PubMed  Google Scholar 

  • Pérez-Victoria JM, Chiquero MJ, Conseil G, Dayan G, Di Pietro A, Barron D, Castanys S, Gamarro F (1999) Correlation between the affinity of flavonoids binding to the cytosolic site of Leishmania tropica multidrug transporter and their efficiency to revert parasite resistance to daunomycin. Biochemistry 38:1736–1743. doi:10.1021/bi982455v

    Article  PubMed  Google Scholar 

  • Philippe G, Angenot L, Tits M, Frédérich M (2004) About the toxicity of some Strychnos species and their alkaloids. Toxicon 44:405–416. doi:10.1016/j.toxicon.2004.05.006

    Article  CAS  PubMed  Google Scholar 

  • Pinto EG, Pimenta DC, Antoniazzi MM, Jared C, Tempone AG (2013) Antimicrobial peptides isolated from Phyllomedusa nordestina (Amphibia) alter the permeability of plasma membrane of Leishmania and Trypanosoma cruzi. Exp Parasitol 135:655–660. doi:10.1016/j.exppara.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro TG, Chávez-Fumagall MA, Valadares DG, França JR, Rodrigues LB, Duarte MC, Lage PS, Andrade PH, Lage DP, Arruda LV, Abánades DR, Costa LE, Martins VT, Tavares CA, Castilho RO, Coelho EA, Faraco AA (2014) Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine 9:877–890. doi:10.2147/IJN.S55678

    Article  PubMed Central  PubMed  Google Scholar 

  • Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TP, Beijnen JH, Vanaerschot M, Decuypere S, Dhakal SS, Das ML, Karki P, Singh R, Boelaert M, Dujardin JC (2013) Increasing failure of miltefosine in the treatment of kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis 56:1530–1538. doi:10.1093/cid/cit102

    Article  CAS  PubMed  Google Scholar 

  • Rocha LG, Almeida JRGS, Macêdo RO, Barbosa-Filho JM (2005) A review of natural products with antileishmanial activity. Phytomedicine 12:514–535. doi:10.1016/j.phymed.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JCF, Bernardes CF, Visbal G, Urbina JA, Vercesi AE, de Souza W (2007) Sterol methenyl transferase inhibitors alter the ultrastructure and function of the Leishmania amazonensis mitochondrion leading to potent growth inhibition. Protist 158:447–456. doi:10.1016/j.protis.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  • Santa-Rita RM, Henriques-Pons A, Barbosa HS, de Castro SL (2004) Effect of the lysophospholipid analogues edelfosine, ilmofosine and miltefosine against Leishmania amazonensis. J Antimicrob Chemother 54:704–710. doi:10.1093/jac/dkh380

    Article  CAS  PubMed  Google Scholar 

  • Santos DO, Coutinho CER, Madeira MF, Bottino CG, Vieira RT, Nascimento SB, Bernardino A, Bourguignon SC, Corte-Real S, Pinho RT, Rodrigues CR, Castro HC (2008) Leishmaniasis treatment: a challenge that remains: a review. Parasitol Res 103:1–10. doi:10.1007/s00436-008-0943-2

    Article  PubMed  Google Scholar 

  • Seifert K, Escobar P, Croft SL (2010) In vitro activity of anti-leishmanial drugs against Leishmania donovani is host cell dependent. J Antimicrob Chemother 65:508–511. doi:10.1093/jac/dkp500

    Article  CAS  PubMed  Google Scholar 

  • Singh S (2015) Changing trends in the epidemiology, clinical presentation, and diagnosis of Leishmania–HIV co-infection in India. Int J Infect Dis 29:103–112. doi:10.1016/j.ijid.2014.07.011

    Article  Google Scholar 

  • Siqueira-Neto JL, Song OR, Oh H, Sohn JH, Yang G, Nam J, Jang J, Cechetto J, Lee CB, Moon S, Genovesio A, Chatelain E, Christophe T, Freitas-Junior LH (2010) Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Negl Trop Dis 4:1–8. doi:10.1371/journal.pntd.0000675

    Article  Google Scholar 

  • Thongphasuk P, Suttisri R, Bavovada R, Verpoorte R (2003) Alkaloids and a pimarane diterpenoid from Strychnos vanprukii. Phytochemistry 64:897–901. doi:10.1016/S0031-9422(03)00508-9

    Article  CAS  PubMed  Google Scholar 

  • Tiuman TS, Ueda-nakamura T, Prado B, Filho D (2005) Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob Agents 49:176–182. doi:10.1128/AAC.49.11.176

    Article  CAS  Google Scholar 

  • Ueda-Nakamura T, Mendonça-Filho RR, Morgado-Díaz JA, Korehisa Maza P, Prado Dias Filho B, Aparício Garcia Cortez D, Alviano DS, Rosa Mdo S, Lopes AH, Alviano CS, Nakamura CV (2006) Antileishmanial activity of eugenol-rich essential oil from Ocimum gratissimum. Parasitol Int 55:99–105. doi:10.1016/j.parint.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  • Valadares DG, Duarte MC, Oliveira JS, Chávez-Fumagalli MA, Martins VT, Costa LE, Leite JP, Santoro MM, Régis WC, Tavares CA, Coelho EA (2011) Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species. Parasitol Int 60:357–363. doi:10.1016/j.parint.2011.06.001

    Article  PubMed  Google Scholar 

  • Vendrametto MC, Santos AO, Nakamura CV, Dias Filho BP, Cortez DA, Ueda-Nakamura T (2010) Evaluation of antileishmanial activity of eupomatenoid-5, a compound isolated from leaves of Piper regnellii var. pallescens. Parasitol Int 59:154–158. doi:10.1016/j.parint.2009.12.009

    Article  CAS  PubMed  Google Scholar 

  • Vermeersch M, Da Luz RI, Toté K, Timmermans JP, Cos P, Maes L (2009) In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrob Agents Chemother 53:3855–3859. doi:10.1128/AAC.00548-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong ILK, Chan KF, Chan TH, Chow LMC (2012) Flavonoid dimers as novel, potent antileishmanial agents. J Med Chem 55:8891–8902. doi:10.1021/jm301172v

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2010) Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases. World Health Organization Tech Rep Ser 949. WHO, Geneva

    Google Scholar 

Download references

Acknowledgments

We would like to thank to Mariana C. Duarte, Vívian T. Martins, Lourena E. Costa, and Daniela P. Lage for their technical assistance. This work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica (INCT-Nanobiofar), FAPEMIG (CBB-APQ-00819-12), CNPq (APQ-472090/2011-9, APQ-482976/2012-8, and APQ-488237/2013-0) and São Paulo State Research Fundation (FAPESP 2012/18756-1). MACF is a grant recipient of FAPEMIG/CAPES. EAFC, VNC and AGT are grant recipient of CNPq.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. F. Coelho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lage, P.S., Chávez-Fumagalli, M.A., Mesquita, J.T. et al. Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum . Parasitol Res 114, 4625–4635 (2015). https://doi.org/10.1007/s00436-015-4708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4708-4

Keywords

Navigation