Skip to main content

Advertisement

Log in

Molecular characterization of bovine Cryptosporidium isolated from diarrheic calves in the Sudan

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Cryptosporidiosis is a common protozoan infection causing morbidity and mortality in young cattle and may be zoonotically transmitted to humans. So far, there is no data available on the presence of Cryptosporidium spp. in the Sudan. The aim of this study was to isolate, identify, and genotype Cryptosporidium oocysts sampled from diarrheic calves housed at different farms in three different municipalities in Khartoum State (Khartoum, Khartoum North, Omdurman). A total of 149 fecal samples were evaluated microscopically for the presence of Cryptosporidium oocysts using the modified Ziehl-Neelsen staining method and 87 (58.3%) samples tested positive. Positive and negative samples were further analyzed by nested PCR targeting the SSU rRNA region. Positive samples were subjected to restriction enzyme analysis of PCR amplicons (PCR-RFLP). Nested PCR identified Cryptosporidium DNA in 53 samples (35.5%); restriction digestion of the PCR products revealed the presence of C. parvum (73.5%), C. ryanae (13.2%), C. andersoni (7.5%), and C. bovis (1.8%). Species distribution was clearly related to age with C. parvum being the predominant species in dysenteric pre-weaned calves. Sequencing of three genes (SSU rRNA, COWP, and GP60) for three C. parvum isolates originating from the three different municipalities showed that all belong to C. parvum subtype family IId. Based on data obtained by GP60, sequencing the two C. parvum isolates from Khartoum and Omdurman represent subtype IIdA18G1, whereas oocysts isolated in Khartoum North belong to subtype IIdA19G1. The observed genotypes are zoonotic and thus C. parvum in calves is potentially a health risk to humans in Khartoum State, Sudan. To the best of our knowledge, this is the first reported attempt to characterize Cryptosporidium isolated from cattle in the Sudan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam AA, Hassan HS, Shears P, Elshibly E (1994) Cryptosporidium in Khartoum, Sudan. J East Afr Med 71(11):745–746

    CAS  Google Scholar 

  • Alves M, Xiao L, Sulaiman I, Lal A, Matos O, Antunes F (2003) Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol 41(6):2744–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves M, Xiao L, Antunes F, Matos O (2006) Distribution of Cryptosporidium subtypes in humans and domestic and wild ruminants in Portugal. Parasitol Res 99(3):287–292

    Article  PubMed  Google Scholar 

  • Amer S, Honma H, Ikarashi M et al (2010) Cryptosporidium genotypes and subtypes in dairy calves in Egypt. Vet Parasitol 169:382–386

    Article  CAS  PubMed  Google Scholar 

  • Bouzid M, Hunter PR, Chalmers RM, Tyler KM (2013) Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev 26(1):115–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalmers R, Smith R, Hadfield S, Elwin K, Giles M (2010) Zoonotic linkage and variation in Cryptosporidium parvum from patients in the United Kingdom. Parasitol Res 108(5):1321–1325

    Article  PubMed  Google Scholar 

  • Checkley W, White AC Jr, Jaganath D et al (2015) A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect Dis 15(1):85–94

    Article  PubMed  Google Scholar 

  • Coklin T, Uehlinger F, Farber J, Barkema H, O’Handley R, Dixon B (2009) Prevalence and molecular characterization of Cryptosporidium spp. in dairy calves from 11 farms in Prince Edward Island, Canada. Vet Parasitol 160(3–4):323–326

    Article  CAS  PubMed  Google Scholar 

  • Duranti A, Cacciò S et al (2009) Risk factors associated with Cryptosporidium parvum infection in cattle. Zoonoses Public Health 56(4):176–182

    Article  CAS  PubMed  Google Scholar 

  • Erwa AE (1995) The prevalence of infection with rotavirus and Cryptosporidium parvum in diarrhoeic calves in Khartoum state. Dissertation, university of Khartoum Faculty of veterinary medicine, Department of preventive medicine and veterinary public health

  • Fayer R, Xiao L (2008) Cryptosporidium and Cryptosporidiosis, 2Edn. CRC Press

  • Feng Y, Ortega Y et al (2007) A wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Vet Parasitol 144:1–9

    Article  PubMed  Google Scholar 

  • Feng Y, Karna SR, Dearen TK, Singh DK, Adhikari LN, Shrestha A, Xiao L (2012) Common occurrence of a unique Cryptosporidium ryanae variant in zebu cattle and water buffaloes in the buffer zone of the Chitwan National Park, Nepal. Vet Parasitol 185:309–314

    Article  PubMed  Google Scholar 

  • Glaberman S, Moore J et al (2002) Three drinking-water–associated cryptosporidiosis outbreaks, Northern Ireland. Emerg Infect Dis 8(6):631–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Göhring F, Möller-Holtkamp P, Daugschies A, Lendner M (2014) Untersuchungen zur Häufigkeit von Cryptosporidium parvum bei Durchfallkälbern und der Einfluss von Koinfektionen auf das Krankheitsgeschehen. Tierarztl Umschau 69:112–120

    Google Scholar 

  • Hajdušek O, Ditrich O, Šlapeta J (2004) Molecular identification of Cryptosporidium spp. in animal and human hosts from the Czech Republic. Vet Parasitol 122(3):183–192

    Article  PubMed  Google Scholar 

  • Helmy YA, Krücken J, Nöckler K, Von Samson-Himmelstjerna G, Zessin K-H (2013) Molecular epidemiology of Cryptosporidiumin livestock animals and humans in the Ismailia province of Egypt. Vet Parasitol 193:15–24

    Article  PubMed  Google Scholar 

  • Hijjawi N, Ng J, Yang R, Atoum MF, Ryan U (2010) Identification of rare and novel Cryptosporidium GP60 subtypes in human isolates from Jordan. Exp Parasitol 125:161–164

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Alderisio KA, Xiao L (2005) Distribution of Cryptosporidium genotypes in storm event water samples from three watersheds in New York. Appl Environ Microbiol 71:4446–4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendner M, Etzold M, Daugschies A (2011) Kryptosporidiose: ein Update. Berl Münch Tierärztl Wschr 124:473–484

    Google Scholar 

  • Mahfouz M, MIRA N, AMER S (2014) Prevalence and genotyping of Cryptosporidium spp. in farm animals in Egypt. J Vet Med Sci 76(12):1569–1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Maikai B, Umoh J, Kwaga J, Lawal I, Maikai V, Cama V, Xiao L (2011) Molecular characterization of Cryptosporidium spp. in native breeds of cattle in Kaduna State, Nigeria. Vet Parasitol 178(3–4):241–245

    Article  CAS  PubMed  Google Scholar 

  • Misic Z, Abe N (2006) Subtype analysis of Cryptosporidium parvum isolates from calves on farms around Belgrade, Serbia and Montenegro, using the 60 kDa glycoprotein gene sequences. Parasitology 134(03):351 40

    Article  PubMed  Google Scholar 

  • Plutzer J, Karanis P (2007) Genotype and subtype analyses of Cryptosporidium isolates from cattle in Hungary. Vet Parasitol 146(3–4):357–362

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Cai J, Wang R, Li J, Jian F, Huang J, Zhou H, Zhang L (2015) Molecular characterization of Cryptosporidium spp. and Giardia duodenalis from yaks in the central western region of China. BMC Microbiol 15(1)

  • Ramirez N, Ward L, Sreevatsan S (2004) A review of the biology and epidemiology of cryptosporidiosis in humans and animals. Microbes Infect 6(8):773–785

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Santín M, Trout JM, Xiao L, Zhou L, Greiner E, Fayer R (2004) Prevalence and age-related variation of Cryptosporidium species and genotypes in dairy calves. Vet Parasitol 122:103–117

    Article  PubMed  Google Scholar 

  • Spano F, Crisanti A (2000) Cryptosporidium parvum: the many secrets of a small genome. Int J Parasitol 30:553–565

    Article  CAS  PubMed  Google Scholar 

  • Spano F, Puri C, Ranucci L, Putignani L, CRISANTI A (1997) Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology 114(5):427–437

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman I, Hira P, Zhou L, Al-Ali F, Al-Shelahi F, Shweiki H, Iqbal J, Khalid N, Xiao L (2005) Unique endemicity of cryptosporidiosis in children in Kuwait. J Clin Microbiol 43(6):2805–2809

    Article  PubMed  PubMed Central  Google Scholar 

  • Suliman TEA, ElBasier HM, Osman HM (2008) Cryptosporidiosis: an emerging disease in animal and man in the Sudan: observations on a disease situation in a foreign group of cattle. Sudanese J Public Health 3(1)

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton CG, Passen S (2004) Inhibition of PCR amplification by phytic acid, and treatment of bovine fecal specimens with phytase to reduce inhibition. J Microbiol Methods 59:43–52

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wang H, Sun Y, Zhang L, Jian F, Qi M, Ning C, Xiao L (2011) Characteristics of Cryptosporidium transmission in preweaned dairy cattle in Henan, China. J Clin Microbiol 49:1077–1082

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:80–89

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Bern C, Limor J, Sulaiman I, Roberts J, Checkley W, Cabrera L, Gilman RH, Lal AA (2001) Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru. J Infect Dis 183:492–497

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang R, Yang F, Zhang L, Cao J, Zhang X, Ling H, Liu A, Shen Y (2013) Distribution and genetic characterizations of Cryptosporidium spp. in pre-weaned dairy calves in Northeastern China’s Heilongjiang Province. PLoS ONE 8(1):e54857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the German Academic Exchange Service DAAD scholarship and Ministry of Higher Education, Sudan for funding this work. Also we would like to thank the University of Khartoum particularly the faculty dean of Veterinary Medicine Prof. Emadeldin Elamin Eltahir.

Particular thanks to Sandra Gawlowska, Institute of Parasitology, Leipzig University, for her excellent work and technical support in molecular works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arwid Daugschies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, S., Elmalik, K., Bangoura, B. et al. Molecular characterization of bovine Cryptosporidium isolated from diarrheic calves in the Sudan. Parasitol Res 116, 2971–2979 (2017). https://doi.org/10.1007/s00436-017-5606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5606-8

Keywords

Navigation