Skip to main content

Advertisement

Log in

A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The zebrafish has served as a model organism for developmental biology. Sequencing its genome has expanded zebrafish research into physiology and drug-development testing. Several cannabinoid pharmaceuticals are in development, but expression of endocannabinoid receptors and enzymes remains unknown in this species. We conducted a bioinformatics analysis of the zebrafish genome using 17 human endocannabinoid genes as a reference set. Putative zebrafish orthologs were identified in filtered BLAST searches as reciprocal best hits. Orthology was confirmed by three in silico methods: phylogenetic testing, synteny analysis, and functional mapping. Zebrafish expressed orthologs of cannabinoid receptor 1, transient receptor potential channel vanilloid receptor 4, GPR55 receptor, fatty acid amide hydrolase 1, monoacylglycerol lipase, NAPE-selective phospholipase D, abhydrolase domain-containing protein 4, and diacylglycerol lipase alpha and beta; and paired paralogs of cannabinoid receptor 2, fatty acid amide hydrolase 2, peroxisome proliferator-activated receptor alpha, prostaglandin-endoperoxide synthase 2, and transient receptor potential cation channel subtype A1. Functional mapping suggested the orthologs of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptor gamma lack specific amino acids critical for cannabinoid ligand binding. No orthologs of N-acylethanolamine acid amidase or protein tyrosine phosphatase, non-receptor type 22 were identified. In conclusion, the zebrafish genome expresses a shifted repertoire of endocannabinoid genes. In vitro analyses are warranted before using zebrafish for cannabinoid development testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agostini M, Gurnell M, Savage DB, Wood EM, Smith AG, Rajanayagam O, Garnes KT, Levinson SH, Xu HE, Schwabe JW, Willson TM, O’Rahilly S, Chatterjee VK (2004) Tyrosine agonists reverse the molecular defects associated with dominant-negative mutations in human peroxisome proliferator-activated receptor gamma. Endocrinology 145:1527–1538

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Baker D, Pryce G, Davies WL, Hiley CR (2006) In silico patent searching reveals a new cannabinoid receptor. Trends Pharmacol Sci 27:1–4

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  • Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845–852

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, Matias I, Schiano-Moriello A, Paul P, Williams EJ, Gangadharan U, Hobbs C, Di Marzo V, Doherty P (2003) Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 163:463–468

    Article  PubMed  CAS  Google Scholar 

  • Blomme T, Vandepoele K, De Bodt S, Simillion C, Maere S, Van de Peer Y (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7:R43

    Article  PubMed  CAS  Google Scholar 

  • Brinkman FS, Leipe DD (2001) Phylogenetic analysis. Methods Biochem Anal 43:323–358

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  PubMed  CAS  Google Scholar 

  • Dinh TP, Freund TF, Piomelli D (2002) A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation. Chem Phys Lipids 121:149–158

    Article  PubMed  CAS  Google Scholar 

  • Elbrecht A, Chen Y, Adams A, Berger J, Griffin P, Klatt T, Zhang B, Menke J, Zhou G, Smith RG, Moller DE (1999) L-764406 is a partial agonist of human peroxisome proliferator-activated receptor gamma. The role of Cys313 in ligand binding. J Biol Chem 274:7913–7922

    Article  PubMed  CAS  Google Scholar 

  • Elphick MR (2002) Evolution of cannabinoid receptors in vertebrates: identification of a CB(2) gene in the puffer fish Fugu rubripes. Biol Bull 202:104–107

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Borjesson M, Tiger G (2000) Differences in the pharmacological properties of rat and chicken brain fatty acid amidohydrolase. Br J Pharmacol 131:498–504

    Article  PubMed  CAS  Google Scholar 

  • Grosser T, Yusuff S, Cheskis E, Pack MA, FitzGerald GA (2002) Developmental expression of functional cyclooxygenases in zebrafish. Proc Natl Acad Sci USA 99:8418–8423

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838–849

    Article  PubMed  CAS  Google Scholar 

  • Ibabe A, Herrero A, Cajaraville MP (2005) Modulation of peroxisome proliferator-activated receptors (PPARs) by PPAR(alpha)- and PPAR(gamma)-specific ligands and by 17beta-estradiol in isolated zebrafish hepatocytes. Toxicol In Vitro 19:725–735

    Article  PubMed  CAS  Google Scholar 

  • Jacobs A (2006) Use of nontraditional animals for evaluation of pharmaceutical products. Expert Opin Drug Metab Toxicol 2:245–349

    Article  Google Scholar 

  • Jarving R, Jarving I, Kurg R, Brash AR, Samel N (2004) On the evolutionary origin of cyclooxygenase (COX) isozymes: characterization of marine invertebrate COX genes points to independent duplication events in vertebrate and invertebrate lineages. J Biol Chem 279:13624–13633

    Article  PubMed  CAS  Google Scholar 

  • Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430

    Article  PubMed  CAS  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  PubMed  CAS  Google Scholar 

  • Knight J, Taylor GW, Wright P, Clare AS, Rowley AF (1999) Eicosanoid biosynthesis in an advanced deuterostomate invertebrate, the sea squirt (Ciona intestinalis). Biochim Biophys Acta 1436:467–478

    PubMed  CAS  Google Scholar 

  • Kozak KR, Crews BC, Morrow JD, Wang LH, Ma YH, Weinander R, Jakobsson PJ, Marnett LJ (2002) Metabolism of the endocannabinoids, 2-arachidonylglycerol and anandamide, into prostaglandin, thromboxane, and prostacyclin glycerol esters and ethanolamides. J Biol Chem 277:44877–44885

    Article  PubMed  CAS  Google Scholar 

  • Lam CS, Rastegar S, Strahle U (2006) Distribution of cannabinoid receptor 1 in the CNS of zebrafish. Neuroscience 138:83–95

    Article  PubMed  CAS  Google Scholar 

  • Leaver MJ, Boukouvala E, Antonopoulou E, Diez A, Favre-Krey L, Ezaz MT, Bautista JM, Tocher DR, Krey G (2005) Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish. Endocrinology 146:3150–3162

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Wang L, Harvey-White J, Osei-Hyiaman D, Razdan R, Gong Q, Chan AC, Zhou Z, Huang BX, Kim HY, Kunos G (2006) A biosynthetic pathway for anandamide. Proc Natl Acad Sci USA 103:13345–13350

    Article  PubMed  CAS  Google Scholar 

  • Maglich JM, Caravella JA, Lambert MH, Willson TM, Moore JT, Ramamurthy L (2003) The first completed genome sequence from a teleost fish (Fugu rubripes) adds significant diversity to the nuclear receptor superfamily. Nucleic Acids Res 31:4051–4058

    Article  PubMed  CAS  Google Scholar 

  • Marx J (2006) Drugs inspired by a drug. Science 311:322–325

    Article  PubMed  CAS  Google Scholar 

  • Matias I, Di Marzo V, McPartland JM (2005) Occurrence and possible biological role of the endocannabinoid system in the sea squirt Ciona intestinalis. J Neurochem 93:1141–1156

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM, Glass M (2003) Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates. Gene 312:297–303

    Article  PubMed  CAS  Google Scholar 

  • McPartland JM, Matias I, Di Marzo V, Glass M (2006) Evolutionary origins of the endocannabinoid system. Gene 370:64–74

    Article  PubMed  CAS  Google Scholar 

  • Mechoulam R, Fride E, Di Marzo V (1998) Endocannabinoids. Eur J Pharmacol 359:1–18

    Article  PubMed  CAS  Google Scholar 

  • Molnar F, Matilainen M, Carlberg C (2005) Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators. J Biol Chem 280:26543–26556

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan SE, Tarling EJ, Bennett AJ, Kendall DA, Randall MD (2005) Novel time-dependent vascular actions of Delta9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma. Biochem Biophys Res Commun 337:824–831

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305

    Article  PubMed  CAS  Google Scholar 

  • Prescott SM, Yost HJ (2002) The COXes of Danio: from mechanistic model to experimental therapeutics. Proc Natl Acad Sci USA 99:9084–9086

    Article  PubMed  CAS  Google Scholar 

  • Robinson-Rechavi M, Marchand O, Escriva H, Bardet PL, Zelus D, Hughes S, Laudet V (2001) Euteleost fish genomes are characterized by expansion of gene families. Genome Res 11:781–788

    Article  PubMed  CAS  Google Scholar 

  • Rockwell CE, Kaminski NE (2004) A cyclooxygenase metabolite of anandamide causes inhibition of interleukin-2 secretion in murine splenocytes. J Pharmacol Exp Ther 311:683–690

    Article  PubMed  CAS  Google Scholar 

  • Rockwell CE, Snider NT, Thompson JT, Vanden Heuvel JP, Kaminski NE (2006) Interleukin-2 suppression by 2-arachidonyl glycerol is mediated through peroxisome proliferator-activated receptor gamma independently of cannabinoid receptors 1 and 2. Mol Pharmacol 70:101–111

    PubMed  CAS  Google Scholar 

  • Rodriguez-Martin I, Herrero-Turrion MJ, Marron Fdez de Velasco E, Gonzalez-Sarmiento R, Rodriguez RE (2006) Characterization of two duplicate zebrafish Cb2-like cannabinoid receptors. Gene [Epub ahead of print]

  • Simon GM, Cravatt BF (2006) Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway. J Biol Chem 281:26465–26472

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Alexander SPH, Kendall DA, Bennett AJ (2006) Cannabinoids and PPARa signalling. Biochem Soc Trans 34:1095–1097

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1999) PAUP* (phylogenetic analysis using parsimony *and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, Maricq A, Bargmann C (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35:307–318

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi K, Sun YX, Okamoto Y, Araki N, Tonai T, Ueda N (2005) Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 280:11082–11092

    Article  PubMed  CAS  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, Shrestha R, Kilaru A, Wiant W, Venables BJ, Chapman KD, Blancaflor EB (2006) Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines. Proc Natl Acad Sci USA 103:12197–12202

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    Article  PubMed  CAS  Google Scholar 

  • Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF (2006) A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 281(48):36569–36578

    Article  PubMed  CAS  Google Scholar 

  • Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15(9):1307–1314

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Zhao H, Tian W, Yoshida K, Roullet JB, Cohen DM (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J Biol Chem 278:11520–11527

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi F, Macrae AD, Brenner S (1996) Molecular cloning of two cannabinoid type 1-like receptor genes from the puffer fish Fugu rubripes. Genomics 35:603–605

    Article  PubMed  CAS  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by an unrestricted grant from GW Pharmaceuticals, Salisbury, Wiltshire SP4 0JQ, UK. The authors thank Ken Mackie and Alistair Nunn for helpful discussions. Conflict of Interest Statement: none of the authors had any financial or personal relationships that influenced the work submitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. McPartland.

Additional information

Communicated by T. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McPartland, J.M., Glass, M., Matias, I. et al. A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio). Mol Genet Genomics 277, 555–570 (2007). https://doi.org/10.1007/s00438-007-0207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0207-3

Keywords

Navigation