Skip to main content
Log in

More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Antisera to orcokinin B, CCHamide 1, and CCHamide 2 recognize enteroendocrine cells in the midgut of the fruitfly Drosophila melanogaster and its larvae. Although the antisera to CCHamide 1 and 2 are mutually cross-reactive, polyclonal mouse antisera raised to the C-terminals of their respective precursors allowed the identification of the two different peptides. In both larva and adult, CCHamide 2 immunoreactive endocrine cells are large and abundant in the anterior midgut and are also present in the anterior part of the posterior midgut. The CCHamide 2 immunoreactive endocrine cells in the posterior midgut are also immunoreactive with antiserum to allatostatin C. CCHamide 1 immunoreactivity is localized in endocrine cells in different regions of the midgut; those in the caudal part of the posterior midgut are identical with the allatostatin A cells. In the larva, CCHamide 1 enteroendocrine cells are also present in the endocrine junction and in the anterior part of the posterior midgut. Like in other insect species, the Drosophila orcokinin gene produces two different transcripts, A and B. Antiserum to the predicted biologically active peptide from the B-transcript recognizes enteroendocrine cells in both larva and adult. These are the same cells as those expressing β-galactosidase in transgenic flies in which the promoter of the orcokinin gene drives expression of this enzyme. In the larva, a variable number of orcokinin-expressing enteroendocrine cells are found at the end of the middle midgut, while in the adult, those cells are most abundant in the middle midgut, while smaller numbers are present in the anterior midgut. In both larva and adult, these cells also express allatostatin C. We also made a specific polyclonal antiserum to the NPF precursor in order to determine more precisely the expression of this peptide in the midgut. Using this antiserum, we find expression in the midgut to be the same as described previously using transgenic flies, while in the adult, midgut expression appears to be concentrated in the middle midgut, thus suggesting that in the anterior midgut only minor quantities of NPF are produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adkins AL, Moran AV (2007) Non-invasive serial blood collection in guinea pigs (Cavia porcellus). USAMRICD-07-02, U.S. Army Medical Research Institute

  • Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P (1999) Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Buchon N, Osman D, David FP, Fang HY, Boquete JP, Deplancke B, Lemaitre B (2013) Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep 3:1725–1738

    Article  CAS  PubMed  Google Scholar 

  • Bungart D, Kegel G, Burdzik S, Keller R (1995) Structure-activity relationships of the crustacean myotropic neuropeptide orcokinin. Peptides 16:199–204

    Article  CAS  PubMed  Google Scholar 

  • Celniker SE, Dillon LA, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, Kellis M, Lai EC, Lieb JD, MacAlpine DM, Micklem G, Piano F, Snyder M, Stein L, White KP, Waterston RH (2009) Unlocking the secrets of the genome. Nature 459:927–930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39:715–720

    Article  CAS  PubMed  Google Scholar 

  • Dircksen H, Burdzik S, Sauter A, Keller R (2000) Two orcokinins and the novel octapeptide orcomyotropin in the hindgut of the crayfish Orconectes limosus: identified myostimulatory neuropeptides originating together in neurones of the terminal abdominal ganglion. J Exp Biol 203:2807–2818

    CAS  PubMed  Google Scholar 

  • Fusé M, Bendena WG, Donly BC, Tobe SS, Orchard I (1998) In situ hybridization analysis of leucomyosuppressin mRNA expression in the cockroach, Diploptera punctata. J Comp Neurol 395:328–341

    Article  PubMed  Google Scholar 

  • Grimmelikhuijzen CJP, Graff D (1986) Isolation of pyroGlu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proc Natl Acad Sci USA 83:9817–9821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen KK, Hauser F, Williamson M, Weber SB, Grimmelikhuijzen CJP (2011) The Drosophila genes CG14593 and CG30106 code for G-protein-coupled receptors specifically activated by the neuropeptides CCH-amide-1 and CCH-amide-2. Biochem Biophys Res Commun 404:184–189

    Article  CAS  PubMed  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Grimmelikhuijzen CJP (2008) A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 29:142–165

    Article  CAS  PubMed  Google Scholar 

  • Hauser F, Neupert S, Williamson M, Predel R, Tanaka Y, Grimmelikhuijzen CJP (2010) Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis. J Proteome Res 9:5296–5310

    Article  CAS  PubMed  Google Scholar 

  • Hofer S, Dircksen H, Tollbäck P, Homberg U (2005) Novel insect orcokinins: characterization and neuronal distribution in the brains of selected dicondylian insects. J Comp Neurol 490:57–71

    Article  CAS  PubMed  Google Scholar 

  • Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE, Sweedler JV (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314:647–649

    Article  CAS  PubMed  Google Scholar 

  • Huybrechts J, Bonhomme J, Minoli S, Prunier-Leterme N, Dombrovsky A, Abdel-Latief M, Robichon A, Veenstra JA, Tagu D (2010) Neuropeptide and neurohormone precursors in the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19(Suppl 2):87–95

    Article  CAS  PubMed  Google Scholar 

  • Ida T, Takahashi T, Tominaga H, Sato T, Kume K, Ozaki M, Hiraguchi T, Maeda T, Shiotani H, Terajima S, Sano H, Mori K, Yoshida M, Miyazato M, Kato J, Murakami N, Kangawa K, Kojima M (2011a) Identification of the novel bioactive peptides dRYamide-1 and dRYamide-2, ligands for a neuropeptide Y-like receptor in Drosophila. Biochem Biophys Res Commun 410:872–877

    Article  CAS  PubMed  Google Scholar 

  • Ida T, Takahashi T, Tominaga H, Sato T, Kume K, Yoshizawa-Kumagaye K, Nishio H, Kato J, Murakami N, Miyazato M, Kangawa K, Kojima M (2011b) Identification of the endogenous cysteine-rich peptide trissin, a ligand for an orphan G protein-coupled receptor in Drosophila. Biochem Biophys Res Commun 414:44–48

    Article  CAS  PubMed  Google Scholar 

  • Ida T, Takahashi T, Tominaga H, Sato T, Sano H, Kume K, Ozaki M, Hiraguchi T, Shiotani H, Terajima S, Nakamura Y, Mori K, Yoshida M, Kato J, Murakami N, Miyazato M, Kangawa K, Kojima M (2012) Isolation of the bioactive peptides CCHamide-1 and CCHamide-2 from Drosophila and their putative role in appetite regulation as ligands for G protein-coupled receptors. Front Endocrinol (Lausanne) 3:177

    CAS  Google Scholar 

  • Isabel G, Martin JR, Chidami S, Veenstra JA, Rosay P (2005) AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol 288(2):R531–R538

    Article  CAS  PubMed  Google Scholar 

  • Johard HAD, Enell LE, Gustafsson E, Trifilieff P, Veenstra JA, Nässel DR (2008) Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: Relations to extrinsic neurons expressing different neurotransmitters. J Comp Neurol 507:1479–1496

    Article  CAS  PubMed  Google Scholar 

  • Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, Lee SH, Robertson HM, Kennedy RC, Elhaik E, Gerlach D, Kriventseva EV, Elsik CG, Graur D, Hill CA, Veenstra JA, Walenz B, Tubío JM, Ribeiro JM, Rozas J, Johnston JS, Reese JT, Popadic A, Tojo M, Raoult D, Reed DL, Tomoyasu Y, Kraus E, Mittapalli O, Margam VM, Li HM, Meyer JM, Johnson RM, Romero-Severson J, Vanzee JP, Alvarez-Ponce D, Vieira FG, Aguadé M, Guirao-Rico S, Anzola JM, Yoon KS, Strycharz JP, Unger MF, Christley S, Lobo NF, Seufferheld MJ, Wang N, Dasch GA, Struchiner CJ, Madey G, Hannick LI, Bidwell S, Joardar V, Caler E, Shao R, Barker SC, Cameron S, Bruggner RV, Regier A, Johnson J, Viswanathan L, Utterback TR, Sutton GG, Lawson D, Waterhouse RM, Venter JC, Strausberg RL, Berenbaum MR, Collins FH, Zdobnov EM, Pittendrigh BR (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA 107:12168–12173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LaJeunesse DR, Johnson B, Presnell JS, Catignas KK, Zapotoczny G (2010) Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells. BMC Physiol 10:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Li S, Torre-Muruzabal T, Søgaard KC, Ren GR, Hauser F, Engelsen SM, Pødenphanth MD, Desjardins A (2013) Grimmelikhuijzen CJP (2013) Expression patterns of the Drosophila neuropeptide CCHamide-2 and its receptor may suggest hormonal signaling from the gut to the brain. PLoS ONE 8:e76131. doi:10.1371/journal.pone.0076131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Baggerman G, D’Hertog W, Verleyen P, Schoofs L, Wets G (2006) In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol Cell Proteomics 5:510–522

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Lee KY, Horodyski FM, Witten JL (2002) Molecular characterization and cell-specific expression of a Manduca sexta FLRFamide gene. J Comp Neurol 446:377–396

    Article  CAS  PubMed  Google Scholar 

  • Marianes A, Spradling AC (2013) Physiological and stem cell compartmentalization within the Drosophila midgut. Elife 27:e00886. doi:10.7554/eLife.00886

    Google Scholar 

  • McQuilton P, St Pierre SE, Thurmond J, FlyBase Consortium (2012) FlyBase 101--the basics of navigating FlyBase. Nucleic Acids Res 40:D706–D714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Brien LE, Soliman SS, Li X, Bilder D (2011) Altered modes of stem cell division drive adaptive intestinal growth. Cell 147:603–614

    Article  PubMed Central  PubMed  Google Scholar 

  • Ons S, Richter F, Urlaub H, Pomar RR (2009) The neuropeptidome of Rhodnius prolixus brain. Proteomics 9:788–792

    Article  CAS  PubMed  Google Scholar 

  • Park D, Veenstra JA, Park JH, Taghert PH (2008) Mapping peptidergic cells in Drosophila: where DIMM fits in. PLoS ONE 3(3):e1896. doi:10.1371/journal.pone.0001896

    Article  PubMed Central  PubMed  Google Scholar 

  • Pascual N, Castresana J, Valero ML, Andreu D, Bellés X (2004) Orcokinins in insects and other invertebrates. Insect Biochem Mol Biol 34:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Radford JC, Davies SA, Dow JAT (2002) Systematic G-protein coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles. J Biol Chem 277:38810–38817

    Article  CAS  PubMed  Google Scholar 

  • Reichwald K, Unnithan GC, Davis NT, Agricola H, Feyereisen R (1994) Expression of the allatostatin gene in endocrine cells of the cockroach midgut. Proc Natl Acad Sci USA 91:11894–11898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiher W, Shirras C, Kahnt J, Baumeister S, Isaac RE, Wegener C (2011) Peptidomics and peptide hormone processing in the Drosophila midgut. J Proteome Res 10:1881–1892

    Article  CAS  PubMed  Google Scholar 

  • Roller L, Yamanaka N, Watanabe K, Daubnerová I, Žitňan D, Kataoka H, Tanaka Y (2008) The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Satake H, Minakata H, Takeda M (2004) Characterization of crustacean cardioactive peptide as a novel insect midgut factor: isolation, localization, and stimulation of alpha-amylase activity and gut contraction. Endocrinology 145:5671–5678

    Article  CAS  PubMed  Google Scholar 

  • Stangier J, Hilbich C, Burdzik S, Keller R (1992) Orcokinin: a novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. Peptides 13:859–864

    Article  CAS  PubMed  Google Scholar 

  • Sterkel M, Oliveira PL, Urlaub H, Hernandez-Martinez S, Rivera-Pomar R, Sheila Ons S (2012) OKB, a novel family of brain-gut neuropeptides from insects. Insect Biochem Mol Biol 42:466–473

    Article  CAS  PubMed  Google Scholar 

  • Tager HS (1976) Coupling of peptides to albumin with difluorodinitrobenzene. Anal Biochem 71:367–375

    CAS  PubMed  Google Scholar 

  • Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA (2009) Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell Tissue Res 336:309–323

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA, Schooneveld H (1984) Immunocytochemical localization of neurons in the nervous system of the Colorado potato beetle with antisera against FMRFamide and bovine pancreatic polypeptide. Cell Tissue Res 235:303–308

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA, Agricola HJ, Sellami A (2008) Regulatory peptides in fruit fly midgut. Cell Tissue Res 334:499–516

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P (2003) Developmental control of foraging and social behavior by the Drosophila neurpeptide Y-like system. Neuron 39:147–161

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka N, Roller L, Zitnan D, Satake H, Mizoguchi A, Kataoka H, Tanaka Y (2011) Bombyx Orcokinins are brain-gut peptides involved in the neuronal regulation of ecdysteroidogenesis. J Comp Neurol 519:238–246

    Article  CAS  PubMed  Google Scholar 

  • Žďárek J, Nachman RJ, Denlinger DL (2000) Parturition hormone in the tsetse Glossina morsitans: activity in reproductive tissues from other species and response of tsetse to identified neuropeptides and other neuroactive compounds. J Insect Physiol 46:213–219

    Article  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

  • Zoephel J, Reiher W, Rexer KH, Kahnt J, Wegener C (2012) Peptidomics of the agriculturally damaging larval stage of the cabbage root fly Delia radicum (Diptera: Anthomyiidae). PLoS ONE 7(7):e41543. doi:10.1371/journal.pone.0041543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs Yoshiaki Tanaka and Akira Mizoguchi for the generous gift of their mouse antiserum to Bombyx orcokinin A, Prof Cok Grimmelikhuijzen for the guinea pig FMRFamide antiserum, Dr Hans Smit for recovering it after 30 years, and Rafael Pineau for some of the mice that were used for making antisera. J.A.V. thanks an anonymous reviewer of a different manuscript for pointing him to the publication by Liu et al. The Drosophila community at large, as well as Institutional funding from the CNRS and the supply of different flies strains from the Bloomington Stock Center, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Veenstra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(JPEG 5391 kb)

High resolution image (TIFF 6127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veenstra, J.A., Ida, T. More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2. Cell Tissue Res 357, 607–621 (2014). https://doi.org/10.1007/s00441-014-1880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1880-2

Keywords

Navigation