Skip to main content
Log in

Experimental infection by Aeromonas hydrophila in Piaractus mesopotamicus: DL50, neurological disturbances, and mortality

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Aeromonosis is an infectious disease of high occurrence in captive fish. It manifests mainly as hemorrhagic septicemia. This study aimed to evaluate the physiopathology manifestations of septic aeromonosis in Piaractus mesopotamicus, considering its clinical manifestations, mortality rates, anatomopathology, and anti-iNOS immunolabeling in the brain. Fish were inoculated in the coelomic cavity with increasing concentrations of A. hydrophila: 1.5 × 108; 1.8 × 108; 2.1 × 108; 2.4 × 108; 2.7 × 108 CF mL−1, histopathology, and anti-iNOS immunolabeling in brain. The animals present erratic swimming (swirling), depigmentation, petechiae, skin suffusions, and high mortality rates up to 100% according to the inoculum concentration. The DL50-96 h was estimated in 1.806 × 108 CFU mL−1. Fish inoculated with 2.1 × 108 CFU mL−1 presented 100% mortality rate. Fish presented neurological signs, congestion, extensive hemorrhage, and glial cells activity confirmed by the anti-iNOS labelling. In addition, the inoculated bacteria was reisolated from the brains. The results demonstrated that aeromonosis physiopathology is multifactorial and the observed neurological signs were caused by the inoculated bacteria. These findings highlight the need for differential diagnosis with other infections that produce encephalitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeyta Júnior C, Kaysner CA, Wekell MM (1990) Incidence of motile aeromonads from United States west coast shellfish growing estuaries. J Food Prot 53:849–855

    Article  Google Scholar 

  • Austin B, Austin DA (2012) Bacterial fish pathogens. Disease of farmed and wild fish, 15th edn. Springer Science & Business Media, Berlin/Heidelberg

  • Bochud PV, Calandra T (2003) Pathogenesis of sepsis: new concepts and implications for future treatment. BMJ J 326:262–266. https://doi.org/10.1136/bmj.326.7383.262

    Article  CAS  Google Scholar 

  • Boijink SL, Brandão DA (2001) Inoculation with Aeromonas hydrophila bacteria and the survival of juvenile jundiá, Rhamdia quelen (teleostei: pimelodida). Cienc Rural 31:03–10. https://doi.org/10.1590/S0103-84782001000300024

    Article  Google Scholar 

  • Boyd CE (1990) Water quality in ponds for aquaculture. Alabama agricultural experiment station, Auburn University, Auburn, EUA

  • Brasil (2011) Ministério de Pesca e Aquicultura. Boletim estatístico de pesca e aquicultura [Statistical Bulletin for Fisheries and Aquaculture]. Brasília: República Federativa do Brasil

  • Carlson B (2008) SNPs-a shortcut to personalized medicine. Genet Eng Biotechnol J 28:12–12

    Google Scholar 

  • Chong RSM, Shinwari MW, Amigh MJ, Avarena-Roman M, Riley TV (2015) First report of Erysipelothrix rhusiopathiae - associated septicaemia and histologic changes in cultured Australian eels, Anguilla reinhardtii (Steindachner, 1867) and A. australis (Richardson, 1841). J Fish Dis 38:839–847. https://doi.org/10.1111/jfd.12293

    Article  PubMed  Google Scholar 

  • Dias MKR, Sampaio LS, Proietti-Junior AA, ETO Y, Rodrigues DP, Rodriguez AFR, Ribeiro RA, FSE F, ROA O, Dias MT (2016) Lethal dose and clinical signs of Aeromonas hydrophila in Arapaima gigas (Arapaimidae), the giant fish from Amazon. Vet Microbiol 188:12–15. https://doi.org/10.1016/j.vetmic.2016.04.001

    Article  PubMed  Google Scholar 

  • Doan HV, Sompong S, Amnuaysilpa S (2013) The LD50 of Asian catfish (Pangasius bocourti, Sauvage 1870) challenge to pathogen Aeromonas hydrophila FW52 strain. La Pensée 75:287–293

    Google Scholar 

  • FAO. Food and Agriculture Organization of the United Nations (2016) The state of world fisheries and aquaculture. Contributing to food security and nutrition for all, Rome, p 176

    Google Scholar 

  • Garcia F, Moraes FR (2009) Hematologia e sinais clínicos de Piaractus mesopotamicus infectados experimentalmente com Aeromonas hydrophila. [Hematology and clinical signs of Piaractus mesopotamicus experimentally infected with Aeromonas hydrophila]. Acta Sci Biol Sci 31:17–21. https://doi.org/10.4025/actascibiolsci.v31i1.308

    Article  Google Scholar 

  • Hamilton MA, Russo RC, Thurston V (1977) Trimmed Spearman–Karber method for estimating medial lethal concentrations in toxicity bioassays. Environ Sci Technol 7:714–719

    Article  Google Scholar 

  • Handa O, Stephen J, Cepinskas G (2008) Role of endothelial nitric oxide synthase - derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. Am J Physiol Heart Circ Physiol 3:1712–1719. https://doi.org/10.1152/ajpheart.00476.2008

    Article  CAS  Google Scholar 

  • Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED, Carson RE, Ding YS, Cosgrove K (2012) Endotoxin - induced systemic inflammation activates microglia: [(11) C] PBR28 positron emission tomography in nonhuman primates. Neuroimage. 3:232–239. https://doi.org/10.1016/j.neuroimage.2012.06.055

    Article  CAS  Google Scholar 

  • Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 3:309–317. https://doi.org/10.1016/j.bbi.2008.09.002

    Article  CAS  Google Scholar 

  • Iliev DB, Liarte CQ, Mackenzie S, Goetz FW (2005) Activation of rainbow trout (Oncorhynchus mykiss) mononuclear phagocytes by different pathogen associated molecular pattern (PAMP) bearing agents. Mol Immunol 42:1215–1223. https://doi.org/10.1016/j.molimm.2004.11.023

    Article  CAS  PubMed  Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73. World Population Prospects The 2015 Revision Key Findings and Advance Tables United Nations New York. https://doi.org/10.1128/CMR.00039-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manrique WG, Claudiano GS, Castro MP, Petrillo TP, Mayra APF, Belo MAA, María IQB, Moraes JER, Moraes FR (2015) Expression of cellular components in granulomatous inflammatory response in Piaractus mesopotamicus model. PLoS One 26:1–8. https://doi.org/10.1371/journal.pone.0121625

    Article  CAS  Google Scholar 

  • Marcusso PF, Yunis-Aguinaga J, Claudiano GS, Manrique WG, Salvador R, Moraes JRE, Moraes FR (2014) Sodium fluorescein for early detection of skin ulcers in Aeromonas hydrophila infected Piaractus mesopotamicus. B Eur Assoc Fish Pat 34:102–106

    Google Scholar 

  • Marinho-Neto FA, Claudiano GS, YunisAguinaga J, Cueva-Quiroz VA, Kobashigawa KK, Cruz NRN, Moraes FR, Moraes JRE (2019) Morphological, microbiological and ultrastructural aspects of sepsis by Aeromonas hydrophila in Piaractus mesopotamicus. PLoS One 14(9):e0222626. https://doi.org/10.1371/journal.pone.0222626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak SK, Swain P, Nanda PK, Dash S, Shukla S, Meher PK (2008) Effect of endotoxin on the immunity of Indian major carp, Labeo rohita. Fish Shellfish Immunol 24:394–399. https://doi.org/10.1016/j.fsi.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  • Nduka O, Parrillo JE (2011) The pathophysiology of septic shock. Am J Crit Care 23:41–66. https://doi.org/10.1016/j.ccc.2009.08.002

    Article  CAS  Google Scholar 

  • Oliveira SR, Souza JTY, Brasil EM, Andrade JIA, Nunes ÉSS, Ono EA, Affonso EG (2011) LD50 of the bacteria Aeromonas hydrophila to matrinxã, Brycon amazonicus. Acta Amaz 41:321–326

    Article  Google Scholar 

  • Osorio-Guarín JA, Enciso-Rodríguez FE, González C, Fernández-Pozo N, Mueller LA, Barrero LS (2016) Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). BMC Genomics 17:248–259. https://doi.org/10.1186/s12864-016-2568-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popoff M (1984) Genus III Aeromonas Kluyver and van Niel 1936 398AL. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Baltimore, Williams & Wilkins, pp 545–548

    Google Scholar 

  • Pridgeon JW, Klesius PK, Song L, Zhang D, Kojima K, Mobley JA (2013) Identification, virulence, and mass spectrometry of toxic ECP fractions of West Alabama isolates of Aeromonas hydrophila obtained from a 2010 disease outbreak. Vet Microbiol 164:336–343. https://doi.org/10.1016/j.vetmic.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  • Santos Y, Bandín I, Nieto TP, Barja JL, Toranzo AE, Ellis AE (1991) Cell‐surface‐associated properties of fish pathogenic bacteria. J Aquat Anim Health 03:297–301

  • Sarkar A, Saha M, Roy P (2012) Identification and typing of Aeromonas hydrophila through 16S rDNA-PCR fingerprinting. J Aquac Res Dev 6:2–4. https://doi.org/10.4172/2155-9546.1000146

    Article  CAS  Google Scholar 

  • Sharshar T, Annane D, de la Grandmaison GL, Brouland JP, Hopkinson NS, Francoise G (2004) The neuropathology of septic shock. Brain Pathol 3:21–33

    Article  Google Scholar 

  • Silva BC, Mouriño JLP, Vieira FN, Jatobá A, Seiffert WQ, Martins ML (2012) Haemorrhagic septicaemia in the hybrid surubim (Pseudoplatystoma corruscans x Pseudoplatystoma fasciatum) caused by Aeromonas hydrophila. Aquac Res 43:908–916

    Article  Google Scholar 

  • Singh M, Singh P, Juneja PK, Singh S, Kaur T (2010) SNP – SNP interactions within APOE gene influence plasma lipids in postmenopausal osteoporosis. Rheumatol Int 31:421–423. https://doi.org/10.1007/s00296-010-1449-7

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Shimada T, Ramamurthy TT, Bhattacharya SK, Yamasaki S, Takeda Y, Nair GB (2004) Prevalence, serotype distribution, antibiotic susceptibility and genetic profiles of mesophilic Aeromonas species isolated from hospitalized diarrhoeal cases in Kolkata. Indian J Med Microbiol 53:527–534. https://doi.org/10.1099/jmm.0.05269-0

    Article  CAS  Google Scholar 

  • Tomás JM (2012) The main Aeromonas pathogenic factors. ISRN Microbiol 1:1–22. https://doi.org/10.5402/2012/256261

    Article  CAS  Google Scholar 

  • Van Gool WA, Van de Beek D, Eikelenboom P (2010) Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet. 3:773–775. https://doi.org/10.1016/S0140-6736(09)61158-2

    Article  CAS  Google Scholar 

  • Vila J, Ruiz J, Gallardo F, Vargas M, Soler L, Figueras MJ, Gascon J (2003) Aeromonas spp. and traveler’s diarrhea: clinical features and antimicrobial resistance. Emerg Infect Dis 9:5–25. https://doi.org/10.3201/eid0905.020451

    Article  Google Scholar 

  • Yunis-Aguinaga J, Claudiano GS, Marcusso PF, Manrique WG, de Moraes JRE, de Moraes FR, Fernandes JB (2015) Uncaria tomentosa increases growth and immune activity in Oreochromis niloticus challenged with Streptococcus agalactiae. Fish Shellfish Immunol 47:630–638. https://doi.org/10.1016/j.fsi.2015.09.051

    Article  PubMed  Google Scholar 

  • Yunis-Aguinaga J, Fernandes DC, Eto SF, Claudiano GS, Marcusso PF, Marinho-Neto FA, Fernandes JB, de Moraes FR, de Moraes JRE (2016) Dietary camu camu, Myrciaria dubia, enhances immunological response in Nile tilapia. Fish Shellfish Immunol 58:284–291. https://doi.org/10.1016/j.fsi.2016.08.030

    Article  PubMed  Google Scholar 

  • Zhang D, Moreira GS, Shoemaker C, Newton JC, Xu DH (2016) Detection and quantification of virulent Aeromonas hydrophila in channel catfish tissues following waterborne challenge. FEMS Microbiol Lett 1:363–369. https://doi.org/10.1093/femsle/fnw080

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julieta R. E. Moraes.

Ethics declarations

The study was carried out according to the Brazilian animal welfare standards and ISO—International Organization for Standardization (2006)—and was approved by the Ethics Committee (protocol n° 008577/12).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claudiano, G.S., de Moraes, F.R., Fernandes, D.C. et al. Experimental infection by Aeromonas hydrophila in Piaractus mesopotamicus: DL50, neurological disturbances, and mortality. Comp Clin Pathol 29, 1119–1126 (2020). https://doi.org/10.1007/s00580-020-03159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-020-03159-z

Keywords

Navigation