Skip to main content
Log in

Electrochemical biosensor for the nuclear factor kappa B using a gold nanoparticle-assisted dual signal amplification method

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nuclear factor kappa B (NF-κB) is a transcription factor that plays a central role in the signaling pathway and network of gene regulation. The dysregulation of NF-κB signaling has been implicated in the pathogenesis of a number of diseases. We report on a dual amplification strategy for the highly sensitive electrochemical sensing of NF-κB by means of a nicking endonuclease-assisted amplification reaction (NEAR). The quantity of the DNA obtained is subsequently determined by applying a gold nanoparticle-assisted electrochemical amplification step. This represents the first example of a combination of NEAR and a dual amplification strategy for the detection of a transcription factor. Experimental results show that the electrochemical signal generated by the redox probe (the ruthenium(III) hexammine complex) can be related to the concentration of NF-κB. The response of the electrode is linearly related to the concentration of NF-κB in the 100 pM to 10 nM range, with a detection limit as low as 80 pM.

An electrochemical biosensor for NF-κB with dual signal amplification is achieved. It was based on nicking endonuclease-assisted amplification reaction (NEAR) and gold nanoparticle-assisted electrochemical amplification (AuNP-EA). The method can be extended for the detection of universal DNA-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132(3):344–362. doi:10.1016/j.cell.2008.01.020

    Article  CAS  Google Scholar 

  2. Li QT, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2(10):725–734. doi:10.1038/nri910

    Article  CAS  Google Scholar 

  3. Eldor R, Yeffet A, Baum K, Doviner V, Amar D, Ben-Neriah Y, Christofori G, Peled A, Carel JC, Boitard C, Klein T, Serup P, Eizirik DL, Melloul D (2006) Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci U S A 103(13):5072–5077. doi:10.1073/pnas.0508166103

    Article  CAS  Google Scholar 

  4. Collister KA, Albensi BC (2005) Potential therapeutic targets in the NF-κB pathway for Alzheimer’s disease. Drug News Perspect 18(10):623–629. doi:10.1358/dnp.2005.18.10.959576

    Article  CAS  Google Scholar 

  5. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH (2004) Activation of the Iκ B kinase complex and nuclear factor-κB contributes to mutant huntingtin neurotoxicity. J Neurosci 24(37):7999–8008. doi:10.1523/jneurosci.2675-04.2004

    Article  CAS  Google Scholar 

  6. Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436. doi:10.1038/nature04870

    Article  CAS  Google Scholar 

  7. Naugler WE, Karin M (2008) NF-κB and cancer — identifying targets and mechanisms. Curr Opin Genet Dev 18(1):19–26. doi:10.1016/j.gde.2008.01.020

    Article  CAS  Google Scholar 

  8. Pepper C, Hewamana S, Brennan P, Fegan C (2009) NF-κB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol 5(7):1027–1037. doi:10.2217/fon.09.72

    Article  CAS  Google Scholar 

  9. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. doi:10.1016/j.cell.2010.01.025

    Article  CAS  Google Scholar 

  10. Tas SW, Vervoordeldonk MJ, Tak PP (2009) Gene therapy targeting nuclear factor-κB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 9(3):160–170. doi:10.2174/156652309788488569

    Article  CAS  Google Scholar 

  11. Schmid RM, Liptay S, Betts JC, Nabel GJ (1994) Structural and functional analysis of NF-κB. Determinants of DNA binding specificity and protein interaction. J Biol Chem 269(51):32162–32167

    CAS  Google Scholar 

  12. Bowen B, Steinberg J, Laemmli UK, Weintraub H (1980) The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res 8(1):1–20. doi:10.1093/nar/8.1.1

    Article  CAS  Google Scholar 

  13. Renard P, Ernest I, Houbion A, Art M, Le Calvez H, Raes M, Remacle J (2001) Development of a sensitive multi-well colorimetric assay for active NF-κB. Nucleic Acids Res 29(4):e21. doi:10.1093/nar/29.4.e21

    Article  CAS  Google Scholar 

  14. Wang JK, Li TX, Guo XY, Lu ZH (2005) Exonuclease III protection assay with FRET probe for detecting DNA-binding proteins. Nucleic Acids Res 33(2):e23. doi:10.1093/nar/gni021

    Article  Google Scholar 

  15. Wang Z, Gidwani V, Zhang DD, Wong PK (2008) Separation-free detection of nuclear factor kappa B with double-stranded molecular probes. Analyst 133(8):998–1000. doi:10.1039/b809113g

    Article  CAS  Google Scholar 

  16. Zhang B, Yao J, Yan H, Fu W (2010) Specific binding DNA-based piezoelectric quartz crystal microbalance biosensor array for the study of NF-κB. Sens Actuators, B 149(1):259–263. doi:10.1016/j.snb.2010.05.013

    Article  CAS  Google Scholar 

  17. Menotta M, Crinelli R, Carloni E, Bianchi M, Giacomini E, Valbusa U, Magnani M (2010) Label-free quantification of activated NF-κB in biological samples by atomic force microscopy. Biosens Bioelectron 25(11):2490–2496. doi:10.1016/j.bios.2010.04.022

    Article  CAS  Google Scholar 

  18. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    CAS  Google Scholar 

  19. Ji HX, Yan F, Lei JP, Ju HX (2012) Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification. Anal Chem 84(16):7166–7171. doi:10.1021/Ac3015356

    Article  CAS  Google Scholar 

  20. Huang J, Wu Y, Chen Y, Zhu Z, Yang X, Yang CJ, Wang K, Tan W (2011) Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew Chem Int Ed 50(2):401–404. doi:10.1002/anie.201005375

    Article  CAS  Google Scholar 

  21. An LX, Tang W, Ranalli TA, Kim HJ, Wytiaz J, Kong HM (2005) Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem 280(32):28952–28958. doi:10.1074/jbc.M503096200

    Article  CAS  Google Scholar 

  22. Lin ZY, Yang WQ, Zhang GY, Liu QD, Qiu B, Cai ZW, Chen GN (2011) An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification. Chem Commun 47(32):9069–9071. doi:10.1039/c1cc13146j

    Article  CAS  Google Scholar 

  23. Zhu XL, Zhao J, Wu Y, Shen ZM, Li GX (2011) Fabrication of a highly sensitive aptasensor for potassium with a nicking endonuclease-assisted signal amplification strategy. Anal Chem 83(11):4085–4089. doi:10.1021/ac200058r

    Article  CAS  Google Scholar 

  24. Xu Y, Lunnen KD, Kong H (2001) Engineering a nicking endonuclease N.AlwI by domain swapping. Proc Natl Acad Sci U S A 98(23):12990–12995. doi:10.1073/pnas.241215698

    Article  CAS  Google Scholar 

  25. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1(1):246–252. doi:10.1038/nprot.2006.38

    Article  CAS  Google Scholar 

  26. Lao R, Song S, Wu H, Wang L, Zhang Z, He L, Fan C (2005) Electrochemical interrogation of DNA monolayers on gold surfaces. Anal Chem 77(19):6475–6480. doi:10.1021/ac050911x

    Article  CAS  Google Scholar 

  27. Cao Y, Wang J, Xu YY, Li GX (2010) Combination of enzyme catalysis and electrocatalysis for biosensor fabrication: application to assay the activity of indoleamine 2,3-dioxygensae. Biosens Bioelectron 26(1):87–91. doi:10.1016/j.bios.2010.05.019

    Article  CAS  Google Scholar 

  28. Miao P, Ning L, Li G (2013) Gold nanoparticles and cleavage-based dual signal amplification for ultrasensitive detection of silver ions. Anal Chem 85(16):7966–7970. doi:10.1021/ac401762e

    Google Scholar 

  29. Zayats M, Huang Y, Gill R, Ma C, Willner I (2006) Label-free and reagentless aptamer-based sensors for small molecules. J Am Chem Soc 128(42):13666–13667. doi:10.1021/ja0651456

    Article  CAS  Google Scholar 

  30. Zhang J, Song SP, Wang LH, Pan D, Fan CH (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2(11):2888–2895. doi:10.1038/nprot.2007.419

    Article  CAS  Google Scholar 

  31. Miao P, Ning L, Li X, Li P, Li G (2011) Electrochemical strategy for sensing protein phosphorylation. Bioconjugate Chem 23(1):141–145. doi:10.1021/bc200523p

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31200742, 81272601, 30973477), the “Chen Guang” project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 10CG42), the Innovation Program of Shanghai Municipal Education Commission (No. 12YZ004) and the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoxia Wang or Xiaoli Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Z., Zhang, B., Yang, Y. et al. Electrochemical biosensor for the nuclear factor kappa B using a gold nanoparticle-assisted dual signal amplification method. Microchim Acta 181, 139–145 (2014). https://doi.org/10.1007/s00604-013-1080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1080-x

Keywords

Navigation