Skip to main content
Log in

Polynomial maps with maximal multiplicity and the special closure

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this article we characterize the polynomial maps \(F:\mathbb {C}^n\rightarrow \mathbb {C}^n\) for which \(F^{-1}(0)\) is finite and their multiplicity \(\mu (F)\) is equal to \(n!\mathrm V_n(\widetilde{\Gamma }_{+}(F))\), where \(\widetilde{\Gamma }_{+}(F)\) is the global Newton polyhedron of F. As an application, we derive a characterization of those polynomial maps whose multiplicity is maximal with respect to a fixed Newton filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Artal Bartolo, E., Luengo, I.: On the topology of a generic fibre of a polynomial function. Commun. Algebra 28(4), 1767–1787 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artal Bartolo, E., Luengo, I., Melle-Hernández, A.: Milnor number at infinity, topology and Newton boundary of a polynomial function. Math. Z. 233(4), 679–696 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bivià-Ausina, C., Fukui, T., Saia, M.J.: Newton graded algebras and the codimension of non-degenerate ideals. Math. Proc. Camb. Philos. Soc. 133, 55–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bivià-Ausina, C., Huarcaya, J.A.C.: The special closure of polynomial maps and global non-degeneracy, Mediterr. J. Math. 14(2), Art. 71 (2017)

  5. Bivià-Ausina, C., Huarcaya, J.A.C.: Growth at infinity and index of polynomial maps. J. Math. Anal. Appl. 422, 1414–1433 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broughton, S.A.: Milnor numbers and the topology of polynomial hypersurfaces. Invent. Math. 92(2), 217–241 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cima, A., Gasull, A., Mañosas, F.: Injectivity of polynomial local homeomorphisms of $\mathbb{R}^n$. Nonlinear Anal. 26(4), 877–885 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  9. Cygan, E., Krasiński, T., Tworzewski, P.: Separation of algebraic sets and the Łojasiewicz exponent of polynomial mappings. Invent. Math. 136(1), 75–87 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Furuya, M., Tomari, M.: A characterization of semi-quasihomogeneous functions in terms of the Milnor number. Proc. Am. Math. Soc. 132(7), 1885–1889 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math 28, 255 (1966)

    Article  MATH  Google Scholar 

  12. Hà Huy, V., Zaharia, A.: Families of polynomials with total Milnor number constant. Math. Ann. 304(3), 481–488 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Hochster, M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. Math. (2) 96, 318–337 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Math. Soc. Lecture Note Series 336. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  15. Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, T.Y., Wang, X.: The BKK root count in $\mathbb{C}^n$. Math. Comput. 65(216), 1477–1484 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Matsumura, H.: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  18. Rojas, J.M.: A convex geometric approach to counting the roots of a polynomial system. Theor. Comput. Sci. 133(1), 105–140 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Saia, M.J.: Pre-weighted homogeneous map germs-finite determinacy and topological triviality. Nagoya Math. J. 151, 209–220 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vasconcelos, W.: Integral Closure. Rees Algebras, Multiplicities, Algorithms. Springer Monographs in Mathematics. Springer, Berlin (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Bivià-Ausina.

Additional information

Communicated by A. Constantin.

Carles Bivià-Ausina was partially supported by DGICYT Grant MTM2015-64013-P. Jorge A. C. Huarcaya was partially supported by FAPESP-BEPE 2012/22365–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bivià-Ausina, C., Huarcaya, J.A.C. Polynomial maps with maximal multiplicity and the special closure. Monatsh Math 188, 413–429 (2019). https://doi.org/10.1007/s00605-018-1204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-018-1204-9

Keywords

Mathematics Subject Classification

Navigation