Skip to main content

Advertisement

Log in

Distribution patterns, ecological niche and conservation status of endemic Tillandsia purpurea along the Peruvian coast

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Species distribution modeling and assessment of the possible current conservation status for loma-forming Tillandsia purpurea Ruiz & Pavón in Peru were performed. This species is considered an epiarenic species that lives under hyperarid conditions, where its main source of water and nutrients comes from the fog of the Pacific coast. For the distribution modeling, 63 records from different sources of information were used, including a current field survey. Locations covered the whole range of the species´ known distribution along the Peruvian coast, and respective elevations lie between 0 and 2000 m a. s. l. Likewise, 27 environmental variables were used, including bioclimatic and eco-geographical ones, to determine the corresponding ecological niche and compare between actual and potential distribution. The conservation status was estimated according to the criteria recommended by the IUCN red list. High probability values were obtained predicting the occurrence of T. purpurea and describing respective environmental conditions such as altitudinal distribution between 400 and 1200 m and predominant southwest exposure of habitats. The conservation status of T. purpurea was supposed between "least concern" and near threatened, recommending that this species should be placed into the latter category and considering recurrent threats by direct anthropogenic impact and climate change verified during the field surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request and have been deposited with DRYAD (https://datadryad.org/stash/share/XRj383mVdFl_BUISATewN7QU2640XNmpDHr2tnyH85c).

References

  • Aguiar-Melo C, Zanella CM, Goetze M, Palma-Silva C, Hirsch LD, Neves B, Costa AF, Bered F (2019) Ecological niche modeling and a lack of phylogeographic structure in Vriesea incurvata suggest historically stable areas in the southern Atlantic Forest: phylogeography of Vriesea incurvata. Amer J Bot 106:971–983. https://doi.org/10.1002/ajb2.1317

    Article  PubMed  Google Scholar 

  • Aponte H, Flores J (2013) Densidad y distribución espacial de Tillandsia latifolia en el Tillandsial de Piedra Campana (Lima, Perú). Ecol Aplicada 12:35–43

    Article  Google Scholar 

  • Arakaki M, Cano A (2003) Composición florística de la cuenca del río Ilo-Moquegua y Lomas de Ilo, Moquegua, Perú. Revista Peruana Biol 10:5–19

    Google Scholar 

  • Barfuss MHJ, Till W, Leme EMC, Pinzón JP, Manzanares JM, Halbritter H, Samuel R, Brown GK (2016) Taxonomic revision of Bromeliaceae subfam. Tillandsioideae based on a multi-locus DNA sequence phylogeny and morphology. Phytotaxa 279(1):1–97

  • Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT et al (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modelling 222:1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

    Article  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Modelling 275:73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

    Article  Google Scholar 

  • Borthagaray A, Fuentes M, Marquet P (2010) Vegetation pattern formation in a fog-dependent ecosystem. J Theor Biol 265:18–26. https://doi.org/10.1016/j.jtbi.2010.04.020

  • Brako L, Zarucchi JL (1993) Catalogue of the flowering plants and gymnosperms of Peru. Monogr Syst Bot Missouri Bot Garden 45:265–309

    Google Scholar 

  • Briceño-Zuluaga F, Castagna A, Rutllant JA, Flores-Aqueveque V, Caquineau S, Sifeddine A, Velazco F, Gutierrez D, Cardich J (2017) Paracas dust storms: sources, trajectories and associated meteorological conditions. Atmos Environm 165:99–110. https://doi.org/10.1016/j.atmosenv.2017.06.019

    Article  CAS  Google Scholar 

  • Cereceda P, Larraín H, Lázaro P, Osses P, Schemenauer RS, Fuentes L (1999) Campos de tillandsias y niebla en el desierto de Tarapacá. Revista de Geografía Norte Grande 26:3–13

  • Cobos ME, Peterson AT, Barve N, Osorio-Olvera L (2019) kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281. https://doi.org/10.7717/peerj.6281

    Article  PubMed  PubMed Central  Google Scholar 

  • Dauby G, Stévart T, Droissart V, Cosiaux A, Deblauwe V, Simo-Droissart M, Sosef MSM, Lowry PP II, Schatz GE, Gereau RE, Couvreur TLP (2017) ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol Evol 7:11292–11303. https://doi.org/10.1002/ece3.3704

    Article  PubMed  PubMed Central  Google Scholar 

  • Dillon MO, Tu T, Xie L, Quipuscoa V, Wen J (2009) Biogeographic diversification in Nolana (Solanceae), a ubiquitous member of the Atacama and Peruvian deserts along the western coast of South America. J Syst Evol 47:457–475. https://doi.org/10.1111/j.1759-6831.2009.00040.x

    Article  Google Scholar 

  • Ferreyra R (1993) Los tipos de vegetación de la costa peruana. Anales Jard Bot Madrid 40:241–256

    Google Scholar 

  • Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51:331–363. https://doi.org/10.1080/10635150252899806

    Article  PubMed  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Galán de Mera A, Linares E, Trujillo C, Villasante F (2010) Termoclina y humedad en el sur del Perú. Bioclimatología y bioindicadores en el departamento de Arequipa. Zonas Áridas 14: 71–82

  • Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Appl Ecol 46:1–9. https://doi.org/10.1111/j.1365-2664.2008.01596.x

    Article  Google Scholar 

  • GBIF.org (2020) GBIF Occurrence. Available at: https://doi.org/10.15468/dl.hpsmkt. Accessed 10 Jun 2020

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. https://doi.org/10.1111/j.14610248.2005.00792.x

    Article  Google Scholar 

  • Gutiérrez D, Bouloubassi I, Sifeddine A, Purca S, Goubanova K, Graco M, Field D, Mejanelle L, Velazco F, Lorre A, Salvatteci R, Quispe D, Vargas G, Dewitte B, Ortlieb L (2011) Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys Res Lett 38:L07603. https://doi.org/10.1029/2010GL046324

    Article  Google Scholar 

  • Haslam R, Borland A, Maxwell K, Griffiths H (2003) Physiological responses of the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae) to variations in light and water supply. J Pl Physiol 160:627–634. https://doi.org/10.1078/0176-1617-00970

  • Hesse R (2012) Spatial distribution of and topographic controls on Tillandsia fog vegetation in coastal southern Peru: Remote sensing and modelling. J Arid Environ 78:33–40. https://doi.org/10.1016/j.jaridenv.2011.11.006

  • Ibarra-Montoya J, Rangel-Peraza G, González-Farias F, Anda J, Martínez-Meyer E, Macias Cuellar H (2012) Uso del modelado de nicho ecológico como una herramienta para predecir la distribución potencial de Microcystis sp. (cianobacteria) en la Presa Hidroeléctrica de Aguamilpa, Nayarit, México. Amb Agua 7: 218–234

  • Instituto Geológico Minero y Metalúrgico (INGEMMET) (1995) Geología del Perú. Boletín N° 55, Serie A, Carta Geológica Nacional. Lima, Perú.

  • Jiménez P, Villasante, F, Talavera C, Villegas L, Huamán E, Ortega A (1997) La neblina como recurso para el desarrollo sustentable de los ecosistemas del desierto costero Peruano-Chileno Santiago. In: Seminario internacional forestación y silvicultura en zonas áridas y semiáridas, Chile, La Serena, 21-25 Oct 1996. Institution Forestal, Corporación de Fomento de la Producción-Chile, pp 50–53

  • Judith C, Schneider JV, Schmidt M, Ortega R, Gaviria J, Zizka G (2013) Using high-resolution remote sensing data for habitat suitability models of Bromeliaceae in the city of Merida, Venezuela. Landscape Urban Plan 120:107–118. https://doi.org/10.1016/j.landurbplan.2013.08.012

    Article  Google Scholar 

  • Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP (2018) Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion. Meth Ecol Evol 9:1151–1156. https://doi.org/10.1111/2041-210X.12945

    Article  Google Scholar 

  • Klemm O, Lin N (2016) What causes observed fog trends: air quality or climate change? Aerosol Air Qual Res 16:1131–1142. https://doi.org/10.4209/aaqr.2015.05.0353

    Article  CAS  Google Scholar 

  • Koch MA, Kleinpeter D, Auer E, Siegmund A, Del Rio CD, Osses P, García JP, Marzol MV, Zizka G, Kiefer C (2019) Living at the dry limits: ecological genetics of Tillandsia landbeckii lomas in the Chilean Atacama Desert. Pl Syst Evol 305:1041–1053. https://doi.org/10.1007/s00606-019-01623-0

    Article  CAS  Google Scholar 

  • Koch MA, Stock C, Kleinpeter D, Del Río CD, Osses P, Merklinger FF, Quandt D, Siegmund A (2020) Vegetation growth and landscape genetics of Tillandsia lomas at their dry limits in the Atacama Desert show fine-scale response to environmental parameters. Ecol Evol 10:13260–13274. https://doi.org/10.1002/ece3.6924

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Martínez-Méndez N, Aguirre-Planter E, Eguiarte LE, Jaramillo-Correa JP (2016) Modelado de nicho ecológico de las especies del género Abies (Pinaceae) en México: algunas implicaciones taxonómicas y para la conservación. Bot Sci 94: 5–24. https://doi.org/10.17129/botsci.508

  • Miller-Rushing A, Primack R (2008) Global warming and flowering times in Thoreau’s concord: a community perspective. Ecology 89:332–341. https://doi.org/10.1890/07-0068.1

    Article  PubMed  Google Scholar 

  • Molau U, Nordenhall U, Eriksen B (2005) Onset of flowering and climate variability in an alpine landscape: a 10-year study from Swedish Lapland. Amer J Bot 92:422–431. https://doi.org/10.3732/ajb.92.3.422

    Article  PubMed  Google Scholar 

  • Mostacero J, Zelada W, Medina C (2007) Biogeografía del Perú. Asamblea Nacional de Rectores, Lima, Perú

  • Muñoz R, Quintana J, Falvey M, Rutllant J, Garreaud R (2016) Coastal clouds at the eastern margin of the southeast Pacific: climatology and trends. J Climatol 29:4525–4542. https://doi.org/10.1175/JCLI-D-15-0757.1

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Meth Ecol Evol 5:1198–1205. https://doi.org/10.1111/2041-210X.12261

    Article  Google Scholar 

  • Ogawa H, Oka S, Ohga N (1986) The meso- and local-scale distribution of lomas vegetation and their determining factors in the coastal desert of southern Peru. In: Ono M (ed) Taxonomic and ecological studies on the lomas vegetation in the Pacific coast of Peru. Makino Herbarium, Tokyo

  • Ono M (1986) Definition, classification and taxonomic significance of the lomas vegetation. In: Ono M (ed) Taxonomic and ecological studies on the lomas vegetation in the Pacific coast of Peru. Makino Herbarium, Tokyo

  • Ortíz-Yusty C, Restrepo A, Páez VP (2014) Distribución potencial de Podocnemis lewyana (Reptilia: Podocnemididae) y su posible fluctuación bajo escenarios de cambio climático global. Acta Biol Colomb 19(3):471–481

  • Osorio-Olvera L, Barve V, Barve N, Soberón J, Falconi M (2016) Ntbox: From getting biodiversity data to evaluating species distributions models in a friendly GUI environment. R package versión 0.2.5.4. Available at: https://github.com/luismurao/ntbox. Accessed 1 Mar 2019

  • Osorio-Olvera L, Lira-Noriega A, Soberón J, Peterson AT, Falconi M, Contreras-Díaz RG, Martínez-Meyer E, Barve V, Barve N (2020) ntbox: an R package with graphical user interface for modeling and evaluating multidimensional ecological niches. Meth Ecol Evol 11:1199–1206. https://doi.org/10.1111/2041-210X.13452

    Article  Google Scholar 

  • Pauca-Tanco GA, Villasante-Benavides F, Villegas-Paredes L, Luque-Fernández CR, Quispe-Turpo J (2020) Distribución y caracterización de las comunidades de Tillandsia (Bromeliaceae) en el sur de Perú y su relación con la altitud, pendiente y orientación. Ecosistemas 29:2035. https://doi.org/10.7818/ECOS.2035

    Article  Google Scholar 

  • Peterson AT, Nakazawa Y (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecol Biogeogr 17:135–144

    Google Scholar 

  • Peterson AT, Papes M, Soberón J (2008) Rethinking receiver operating characteristic análisis applications in ecological niche modeling. Ecol Modelling 213:63–72

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M (2011) Ecological niches and geographic distributions. In: Levin SA, Horn HS (eds) Monographs in population biology. Princeton University Press, Princeton

    Google Scholar 

  • Phillips S, Anderson R, Sphapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Modelling 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Pinto R (2005) Tillandsia del norte de Chile y del extremo sur del Perú. Flor Atacama, Santiago

  • Pinto R, Barría I, Marquet PA (2006) Geographical distribution of Tillandsia lomas in the Atacama Desert, northern Chile. J Arid Environm 65:543–552. https://doi.org/10.1016/j.jaridenv.2005.08.015

    Article  Google Scholar 

  • QGIS.org (2020) QGIS Sistema de Información Geográfica. Proyecto de Fundación Geoespacial de Código Abierto. Available at: http://qgis.org

  • Rauh W (1985) The Peruvian-Chilean deserts. In: Evenari M, Noy-Meir I, Goodall DW (eds) Ecosystems of the World 12 A. Hot deserts and arid shrublands. Elsevier, Amsterdam, Alemania, pp 239–267

  • Romero-Alvarez D, Peterson AT, Salzer JS, Pittiglio C, Shadomy S, Traxler R (2020) Potential distributions of Bacillus anthracis and Bacillus cereus biovar anthracis causing anthrax in Africa. PLoS Negl Trop Dis 14:e0008131. https://doi.org/10.1371/journal.pntd.0008131

    Article  PubMed  PubMed Central  Google Scholar 

  • RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston. Available at: http://www.rstudio.com/

  • Rundel PW, Dillon MO (1998) Ecological patterns in the Bromeliaceae of the lomas formations of Coastal Chile and Peru. Pl Syst Evol 212:261–278. https://doi.org/10.1007/BF01089742

    Article  Google Scholar 

  • Rundel PW, Dillon MO, Palma B, Mooney AH, Gulmon SL, Ehleringer JR (1991) The phytogeography and ecology of the coastal Atacama and Peruvian Deserts. Aliso 13:1–50

    Article  Google Scholar 

  • Rundel PW, Palma B, Dillon MO, Sharifi MR, Boonpragob K (1997) Tillandsia landbeckii in the coastal Atacama Desert of northern Chile.  Revista Chilena Hist Nat 70:341–349

    Google Scholar 

  • Schulz N, Aceituno P, Richter M (2010) Phytogeographic divisions, climate change and plant dieback along the coastal desert of northern Chile. Erdkunde 65:169–187. https://doi.org/10.3112/erdkunde.2011.02.05

    Article  Google Scholar 

  • Smith LB (1936) Bromeliaceae. Flora of Peru. Field Mus Nat Hist Bot Ser 13: 495–592.

  • Smith LB, Downs RJ (1977) Tillandsioideae (Bromeliaceae). Fl Neotrop 14:663–1492

    Google Scholar 

  • Smith LB, Till W (1998) Bromeliaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Springer, Berlin, pp 74–99

    Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species distributional areas. Biodivers Inform 2:1–10

    Article  Google Scholar 

  • Trabucco A, Zomer, R. (2019) Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. figshare. https://doi.org/10.6084/m9.figshare.7504448.v3

  • Ulloa-Ulloa C, Acevedo-Rodríguez P, Beck S, Belgrano MJ, Bernal R, Berry PE, Brako L, Celis M, Davidse G, Forzza RC, Gradstein SR, Hokche O, León B, León-Yánez S, Magill RE, Neill DA, Nee M, Raven PH, Stimmel H, Strong MT, Villaseñor JL, Zarucchi JL, Zuloaga FO, Jørgensen PM (2017) An integrated assessment of the vascular plant species of the Americas. Science 358:1614–1617. https://doi.org/10.1126/science.aao0398

    Article  CAS  PubMed  Google Scholar 

  • UNEP (United Nations Environment Programme) (1997) World atlas of desertification 2ED. UNEP, London

    Google Scholar 

  • Venter O, Sanderson EW, Magrach A, Allan JR, Beher J, Jones KR, Possingham HP, Laurance WF, Wood P, Fekete BM, Levy MA, Watson JE (2016) Global terrestrial human footprint maps for 1993 and 2009. Sci Data 3:160067. https://doi.org/10.1038/sdata.2016.67

    Article  PubMed  PubMed Central  Google Scholar 

  • Whaley O, Orellana-García A, Pecho-Quispe J (2019) An annotated checklist to vascular Flora of the Ica Region, Peru-with notes on endemic species, habitat, climate and agrobiodiversity. Phytotaxa 389:1–125

    Article  Google Scholar 

  • Zizka G, Schmidt M, Schulte K, Novoa P, Pinto R, König K (2009) Chilean Bromeliaceae: diversity, distribution and evaluation of conservation status. Biodivers Conservation 18:2449–2471. https://doi.org/10.1007/s10531-009-9601-y

    Article  Google Scholar 

  • Zizka A, Azevedo J, Leme E, Neves B, Ferreira da Costa A, Cáceres D, Zizka A (2020) Biogeography and conservation status of the pineapple family (Bromeliaceae). Diversity Distrib 6:183–195

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mr. Jorge Ignacio for his collaboration in the field work in Tacna (Peru).

Funding

F. Villasante Benavides and collaborators acknowledge the financial support of the Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (Concytec) through its executing unit the Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (Fondecyt) for this research work. The present work was funded by Fondecyt through the ERANet-LAC program (ELAC2015/T01-0872).

Author information

Authors and Affiliations

Authors

Contributions

FV, MAK and AS conceived the project and the experiments. FV, CL, AP, JP and LV conducted the experiment(s). AP and CL analyzed the results. FV, AP and CL drafted the manuscript. All authors contributed to the final manuscript draft.

Corresponding authors

Correspondence to Francisco Villasante Benavides or Marcus A. Koch.

Ethics declarations

Conflict of interest

The authors declare that they do have no conflict of interest.

Additional information

Handling editor: Dietmar Quandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villasante Benavides, F., Pauca-Tanco, .A., Luque-Fernández, C.R. et al. Distribution patterns, ecological niche and conservation status of endemic Tillandsia purpurea along the Peruvian coast. Plant Syst Evol 307, 52 (2021). https://doi.org/10.1007/s00606-021-01773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-021-01773-0

Keywords

Navigation