Skip to main content
Log in

Effect of electrolyte and agitation on the anomalous behavior and morphology of electrodeposited Co–Ni alloys

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This study continues previous work which showed that the anomalous behavior of Co–Ni deposition could be alleviated or eliminated through use of cyclic voltammetry (CV) or pulse reverse (PR) plating. The research focuses on aspects not considered in this previous work: the effects of the anion and agitation in the plating bath. A comparison is made of Co–Ni electrodeposition using the CV and PR techniques in sulfate and chloride baths at pH 3 containing equimolar Co(II) and Ni(II) concentrations under both stirred and unstirred conditions. The anomalous behavior can be significantly suppressed and even eliminated with current efficiencies above 90 % through use of PR plating, in particular, but only if carried out in a chloride solution under quiescent conditions. Both metal ion reduction during the cathodic portion and oxidation of the coating during anodic polarization are accelerated in the chloride solution relative to that in the sulfate solution. Electrolyte agitation exacerbates anomalous deposition and reduces the current efficiency by enhancing mass transport of Co(II) and H+ to and from the electrode. The origin of anomalous deposition and effects of the chloride ion are examined in terms of coordination chemistry and ligand field theory. This analysis suggests that oxidation of the Co–Ni coating in the chloride solution during anodic polarization of the PR and CV cycles when cobalt preferentially dissolves is crucial to suppressing the anomalous behavior. Examination of the coatings shows that the anion type, degree of agitation of the electrolyte, and electroplating technique significantly affects their microstructure and roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bai A, Hu C-C (2002) Electrochim Acta 47:3447–3456

    Article  CAS  Google Scholar 

  2. Bai A, Hu C-C (2005) Electrochim Acta 50:1335–1345

    Article  CAS  Google Scholar 

  3. Vazquez-Arenas J, Treeratanaphitak T, Pritzker M (2011) Electrochim Acta 62:63–72

    Article  Google Scholar 

  4. Vazquez-Arenas J, Altamirano L, Treeratanaphitak T, Pritzker M, Cabrera-Sierra R, Sanchez RL (2012) Electrochim Acta 65:234–243

    Article  CAS  Google Scholar 

  5. Vazquez-Arenas J, Pritzker M (2012) Electrochim Acta 66:139–150

    Article  CAS  Google Scholar 

  6. Lyons EH (1974) Modern electroplating. Wiley, Hoboken

    Google Scholar 

  7. Vazquez-Arenas J, Pritzker M (2010) J Electrochem Soc 157:D283–D294

    Article  CAS  Google Scholar 

  8. Vazquez-Arenas J, Altamirano-Garcia L, Pritzker M, Luna-Sanchez R, Cabrera-Sierra R (2011) J Electrochem Soc 158:D33–D41

    Article  CAS  Google Scholar 

  9. Vazquez-Arenas J, Pritzker M (2010) Electrochim Acta 55:8376–8387

    Article  CAS  Google Scholar 

  10. Pletcher D et al (1985) Adsorption at solid electrodes. Electrochemistry 30:1–83

    Article  Google Scholar 

  11. de Levie R (1971) J Electrochem Soc 118:185C–192C

    Article  Google Scholar 

  12. Heyrovsky J (1947) Discussions Faraday Soc 1:212–225

    Article  Google Scholar 

  13. Hardesty DW (1970) J Electrochem Soc 117:168–172

    Article  CAS  Google Scholar 

  14. Carneval G, de Cusminsky JB (1981) J Electrochem Soc 128:1215–1221

    Article  CAS  Google Scholar 

  15. Bockris JOM, Enyo M (1962) Trans Faraday Soc 58:1187–1202

    Article  CAS  Google Scholar 

  16. Vazquez-Arenas J, Vazquez G, Melendez AM, Gonzalez I (2007) J Electrochem Soc 154:D473–D481

    Article  CAS  Google Scholar 

  17. Horkans J (1981) J Electrochem Soc 128:45–49

    Article  CAS  Google Scholar 

  18. Lieder M, Biallozor S (1985) Surface Technology 26:23–34

    Article  CAS  Google Scholar 

  19. Kim D, Park D-Y, Yoo BY, Sumodjo PTA, Myung NV (2003) Electrochim Acta 48:819–830

    Article  CAS  Google Scholar 

  20. Jović V, Jović B, Maksimović V, Pavlović M (2007) Electrochim Acta 52:4254–4263

    Article  Google Scholar 

  21. Karayannis H, Patermarakis G (1995) Electrochim Acta 40:1079–1092

    Article  CAS  Google Scholar 

  22. Gómez E, Ramirez J, Valles E (1998) J Appl Electrochem 28:71–79

    Article  Google Scholar 

  23. Andricacos P, Arana C, Tabib J, Dukovic J, Romankiw L (1989) J Electrochem Soc 136:1336–1340

    Article  CAS  Google Scholar 

  24. Zech N, Podlaha E, Landolt D (1998) J Appl Electrochem 28:1251–1260

    Article  CAS  Google Scholar 

  25. Theory and Practice of Pulse Plating (1986). In: Puippe JC, Leaman F (eds). American Electroplaters and Surface Finishers Society, Orlando, FL

  26. Lyons EH (1954) J Electrochem Soc 101:376–381

    Article  CAS  Google Scholar 

  27. Hush N, Scarrott J (1964) J Electroanal Chem 7:26–37

    CAS  Google Scholar 

  28. Górski W, Lipkowski J (1982) J Electroanal Chem 133:253–267

    Article  Google Scholar 

  29. Bennes R (1973) J Electroanal Chem Interf Electrochem 44:145–151

    Article  CAS  Google Scholar 

  30. Mendoza-Huizar L, Palomar-Pardavé M, Robles J (2001) Electrochim Acta 46:2749–2755

    Article  CAS  Google Scholar 

  31. Taube H (1952) Chem Rev 50:69–126

    Article  CAS  Google Scholar 

  32. Taube H (1970) Electron-transfer reactions of complex ions in solution. Academic, New York

    Google Scholar 

  33. Figgis BN, Hitchman MA (2000) Ligand field theory and its application. Wiley, New York

    Google Scholar 

  34. Ribas Gispert J (2008) Coordination chemistry. Wiley, Wenheim

    Google Scholar 

  35. Ducommun Y, Newman K, Merbach A (1980) Inorg Chem 19:3696–3703

    Article  CAS  Google Scholar 

  36. Merbach A (1982) Pure Appl Chem 54:1479–1493

    Article  CAS  Google Scholar 

  37. Rotzinger F (1997) J Am Chem Soc 119:5230–5238

    Article  CAS  Google Scholar 

  38. Vijh A, Randin J (1975) J Phys Chem 79:1252–1254

    Article  CAS  Google Scholar 

  39. Golodnitsky D, Gudin NV, Volyanuk GA (2000) J Electrochem Soc 147:4156–4163

    Article  CAS  Google Scholar 

  40. Basolo F, Johnson R (1986) Coordination chemistry, 2nd edn. Science Reviews, Middlesex

    Google Scholar 

  41. Gomez E, Pane S, Valles E (2005) Electrochim Acta 51:146–153

    Article  CAS  Google Scholar 

  42. Chi B, Li J, Yang X, Gong Y, Wang N (2005) Int J Hydr Energy 30:29–34

    Article  CAS  Google Scholar 

  43. Zeltman A, Matwiyoff N, Morgan L (1969) J Phys Chem 73:2689–2696

    Article  Google Scholar 

  44. Lincoln F, Aprile F, Dodgen HW, Hunt JP (1968) Inorg Chem 7:929–932

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support to carry out this work. JVA expresses gratitude to the Mexican Council of Science and Technology (CONACyT) for the stipends received through SNI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Vazquez-Arenas.

Additional information

Dedicated to Prof. Alexander Milchev on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vazquez-Arenas, J., Pritzker, M. Effect of electrolyte and agitation on the anomalous behavior and morphology of electrodeposited Co–Ni alloys. J Solid State Electrochem 17, 419–433 (2013). https://doi.org/10.1007/s10008-012-1932-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1932-z

Keywords

Navigation