Skip to main content
Log in

Electrocatalysis of As(III) oxidation by cobalt oxide nanoparticles: measurement and modeling the effect of nanoparticle amount on As(III) oxidation potential

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The performance of electrodes modified with electrochemically generated cobalt oxide nanoparticles for the oxidation of As(III) species was investigated by cyclic voltammetry (CV) and rotating disk voltammetry (RDV). The oxide nanoparticles were made by electrodeposition from cobalt oxides using CV without the reduction of water or anions. Controlling deposition parameters, different values of surface concentration (Γ) can be obtained. Electrochemical experiments (CV and RDV at different rotation rate) showed a shift in the As(III) oxidation potentials to lower values; when the coverage surface increased, these differences in the surface concentration produced a potential shift of up to 150 mV. This phenomenon depends on the ratio of the electrode active area to the geometric area (Ψ). The Levich and Koutecký-Levich analysis of RDV voltammetric data confirmed that the oxidation of As(III) on modified electrodes is controlled by mass transport. It was also demonstrated that different values of surface concentration produces different kinetic current values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cotillas S, Llanos J, Rodrigo MA, Cañizares P (2015) Use of carbon felt cathodes for the electrochemical reclamation of urban treated wastewaters. Appl Catal B Environ 162:252–259. https://doi.org/10.1016/j.apcatb.2014.07.004

    Article  CAS  Google Scholar 

  2. Tanjila N, Rayhan A, Alam MS, Siddiquey IA, Hasnat MA (2016) Electrochemical and spectroscopic insights of interactions between alizarin red S and arsenite ions. RSC Adv 6(95):93162–93168. https://doi.org/10.1039/C6RA21356A

    Article  CAS  Google Scholar 

  3. Hasnat MA, Hasan MM, Tanjila N, Alam MM, Rahman MM (2017) pH dependent kinetic insights of electrocatalytic arsenite oxidation reactions at Pt surface. Electrochim Acta 225:105–113. https://doi.org/10.1016/j.electacta.2016.12.055

    Article  CAS  Google Scholar 

  4. Salimi A, Mamkhezri H, Hallaj R, Soltanian S (2008) Electrochemical detection of trace amount of arsenic (III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sensors Actuators B Chem 129(1):246–254. https://doi.org/10.1016/j.snb.2007.08.017

    Article  CAS  Google Scholar 

  5. Karuppiah C, Palanisamy S, Chen S-M, Veeramani V, Periakaruppan P (2014) A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sensors Actuators B Chem 196:450–456. https://doi.org/10.1016/j.snb.2014.02.034

    Article  CAS  Google Scholar 

  6. Hossain M, Islam M, Ferdousi S, Okajima T, Ohsaka T (2008) Anodic Stripping Voltammetric detection of arsenic (III) at gold nanoparticle-modified glassy carbon electrodes prepared by electrodeposition in the presence of various additives. Electroanalysis 20(22):2435–2441. https://doi.org/10.1002/elan.200804339

    Article  CAS  Google Scholar 

  7. Sun H, Ang HM, Tadé MO, Wang S (2013) Co3O4 nanocrystals with predominantly exposed facets: synthesis, environmental and energy applications. J Mater Chem A 1(46):14427–14442. https://doi.org/10.1039/c3ta12960h

    Article  CAS  Google Scholar 

  8. Castro E, Real S, Dick LP (2004) Electrochemical characterization of porous nickel–cobalt oxide electrodes. Int J Hydrog Energy 29(3):255–261. https://doi.org/10.1016/S0360-3199(03)00133-2

    Article  CAS  Google Scholar 

  9. Godillot G, Taberna P-L, Daffos B, Simon P, Delmas C, Guerlou-Demourgues L (2016) High power density aqueous hybrid supercapacitor combining activated carbon and highly conductive spinel cobalt oxide. J Power Sources 331:277–284. https://doi.org/10.1016/j.jpowsour.2016.09.035

    Article  CAS  Google Scholar 

  10. Rodriguez JA, Fernández-García M (2007) Synthesis, properties, and applications of oxide nanomaterials. John Wiley & Sons, New York. https://doi.org/10.1002/0470108975

    Book  Google Scholar 

  11. Kaneko M, Okada T (1988) A secondary battery composed of multilayer Prussian Blue and its reaction characteristics. J Electroanal Chem 255(1-2):45–52. https://doi.org/10.1016/0022-0728(88)80003-2

    Article  CAS  Google Scholar 

  12. Jung D, Han M, Lee GS (2014) Room-temperature gas sensor using carbon nanotube with cobalt oxides. Sensors Actuators B Chem 204:596–601. https://doi.org/10.1016/j.snb.2014.08.020

    Article  CAS  Google Scholar 

  13. Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26(4):1178–1194. https://doi.org/10.1016/j.bios.2010.07.033

    Article  Google Scholar 

  14. Linares N, Silvestre-Albero AM, Serrano E, Silvestre-Albero J, Garcia-Martinez J (2014) Mesoporous materials for clean energy technologies. Chem Soc Rev 43(22):7681–7717. https://doi.org/10.1039/C3CS60435G

    Article  CAS  Google Scholar 

  15. Nair MM, Yen H, Kleitz F (2014) Nanocast mesoporous mixed metal oxides for catalytic applications. Comptes Rendus Chimie 17(7-8):641–655. https://doi.org/10.1016/j.crci.2014.04.005

    Article  CAS  Google Scholar 

  16. Moura SL, de Moraes RR, dos Santos MAP, Pividori MI, Lopes JAD, de Lima MD, Zucolotto V, dos Santos Júnior JR (2014) Electrochemical detection in vitro and electron transfer mechanism of testosterone using a modified electrode with a cobalt oxide film. Sensors Actuators B Chem 202:469–474. https://doi.org/10.1016/j.snb.2014.05.104

    Article  CAS  Google Scholar 

  17. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J-G, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1(2):195–220. https://doi.org/10.1016/j.nanoen.2011.11.006

    Article  CAS  Google Scholar 

  18. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42(9):4098–4140. https://doi.org/10.1039/c2cs35322a

    Article  CAS  Google Scholar 

  19. Hasanzadeh M, Karim-Nezhad G, Shadjou N, Hajjizadeh M, Khalilzadeh B, Saghatforoush L, Abnosi MH, Babaei A, Ershad S (2009) Cobalt hydroxide nanoparticles modified glassy carbon electrode as a biosensor for electrooxidation and determination of some amino acids. Anal Biochem 389(2):130–137. https://doi.org/10.1016/j.ab.2009.03.024

    Article  CAS  Google Scholar 

  20. Song Y, He Z, Zhu H, Hou H, Wang L (2011) Electrochemical and electrocatalytic properties of cobalt nanoparticles deposited on graphene modified glassy carbon electrode: Application to some amino acids detection. Electrochim Acta 58:757–763. https://doi.org/10.1016/j.electacta.2011.10.033

    Article  CAS  Google Scholar 

  21. Chevallier FG, Davies TJ, Klymenko OV, Jiang L, Jones TG, Compton RG (2005) Numerical simulation of partially blocked electrodes under cyclic voltammetry conditions: influence of the block unit geometry on the global electrochemical properties. J Electroanal Chem 577(2):211–221. https://doi.org/10.1016/j.jelechem.2004.11.033

    Article  CAS  Google Scholar 

  22. Jung S, Kortlever R, Jones RJ, Lichterman MF, Agapie T, McCrory CC, Peters JC (2016) Gastight hydrodynamic electrochemistry: design for a hermetically sealed rotating disk electrode cell. Anal Chem 89(1):581–585. https://doi.org/10.1021/acs.analchem.6b04228

    Article  Google Scholar 

  23. Łukaszewski M, Soszko M, Czerwiński A (2016) Electrochemical methods of real surface area determination of noble metal electrodes—an overview. Int J Electrochem Sci 11:4442–4469

    Article  Google Scholar 

  24. Zhao S, Wangstrom AE, Liu Y, Rigdon WA, Mustain WE (2015) Stability and activity of Pt/ITO electrocatalyst for oxygen reduction reaction in alkaline media. Electrochim Acta 157:175–182. https://doi.org/10.1016/j.electacta.2015.01.030

    Article  CAS  Google Scholar 

  25. Song C, Zhang J (2008) Electrocatalytic oxygen reduction reaction. In: Zhang J (ed) PEM fuel cell electrocatalysts and catalyst layers. Springer, Berlin

    Google Scholar 

  26. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5(7):7936–7942. https://doi.org/10.1039/c2ee21802j

    Article  CAS  Google Scholar 

  27. Treimer S, Tang A, Johnson DC (2002) A Consideration of the application of Koutecký-Levich plots in the diagnoses of charge-transfer mechanisms at rotated disk electrodes. Electroanalysis 14(3):165–171. https://doi.org/10.1002/1521-4109(200202)14:3<165::AID-ELAN165>3.0.CO;2-6

    Article  CAS  Google Scholar 

  28. Davies TJ, Moore RR, Banks CE, Compton RG (2004) The cyclic voltammetric response of electrochemically heterogeneous surfaces. J Electroanal Chem 574(1):123–152. https://doi.org/10.1016/j.jelechem.2004.07.031

    Article  CAS  Google Scholar 

  29. Barbero C, Planes GA, Miras MC (2001) Redox coupled ion exchange in cobalt oxide films. Electrochem Commun 3(3):113–116. https://doi.org/10.1016/S1388-2481(01)00107-2

    Article  CAS  Google Scholar 

  30. Hallaj R, Akhtari K, Salimi A, Soltanian S (2013) Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method. Appl Surf Sci 276:512–520. https://doi.org/10.1016/j.apsusc.2013.03.125

    Article  CAS  Google Scholar 

  31. Palomar-Pardavé M, González I, Soto AB, Arce EM (1998) Influence of the coordination sphere on the mechanism of cobalt nucleation onto glassy carbon. J Electroanal Chem 443(1):125–136. https://doi.org/10.1016/S0022-0728(97)00496-8

    Article  Google Scholar 

  32. Spataru N, Terashima C, Tokuhiro K, Sutanto I, Tryk DA, Park S-M, Fujishima A (2003) Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes. J Electrochem Soc 150(7):E337–E341. https://doi.org/10.1149/1.1579037

    Article  CAS  Google Scholar 

  33. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal Chim Acta 594(1):24–31. https://doi.org/10.1016/j.aca.2007.05.010

    Article  CAS  Google Scholar 

  34. Jafarian M, Mahjani M, Heli H, Gobal F, Khajehsharifi H, Hamedi M (2003) A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode. Electrochim Acta 48(23):3423–3429. https://doi.org/10.1016/S0013-4686(03)00399-2

    Article  CAS  Google Scholar 

  35. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130(9):2730–2731. https://doi.org/10.1021/ja7106178

    Article  CAS  Google Scholar 

  36. Casella IG, Gatta M (2002) Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 534(1):31–38. https://doi.org/10.1016/S0022-0728(02)01100-2

    Article  CAS  Google Scholar 

  37. Razmi H, Habibi E (2010) Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system. Electrochim Acta 55(28):8731–8737. https://doi.org/10.1016/j.electacta.2010.07.081

    Article  CAS  Google Scholar 

  38. Boggio R, Carugati A, Trasatti S (1987) Electrochemical surface properties of Co3O4 electrodes. J Appl Electrochem 17(4):828–840. https://doi.org/10.1007/BF01007821

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2003) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  40. Davies TJ, Compton RG (2005) The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: theory. J Electroanal Chem 585(1):63–82. https://doi.org/10.1016/j.jelechem.2005.07.022

    Article  CAS  Google Scholar 

  41. Ward KR, Gara M, Lawrence NS, Hartshorne RS, Compton RG (2013) Nanoparticle modified electrodes can show an apparent increase in electrode kinetics due solely to altered surface geometry: the effective electrochemical rate constant for non-flat and non-uniform electrode surfaces. J Electroanal Chem 695:1–9. https://doi.org/10.1016/j.jelechem.2013.02.012

    Article  CAS  Google Scholar 

  42. Amatore C, Savéant JM, Tessier D (1983) Charge transfer at partially blocked surfaces: a model for the case of microscopic active and inactive sites. J Electroanal Chem Interfacial Electrochem 147:39–51, 1-2. https://doi.org/10.1016/S0022-0728(83)80055-2

  43. Ward KR, Compton RG (2014) Quantifying the apparent “catalytic” effect of porous electrode surfaces. J Electroanal Chem 724:43–47. https://doi.org/10.1016/j.jelechem.2014.04.009

    Article  CAS  Google Scholar 

  44. Boggio R, Carugati A, Trasatti S (1987) Electrochemical surface properties of Co3O4 electrodes. J Appl Electrochem 17(4):828–840. https://doi.org/10.1007/BF01007821

    Article  CAS  Google Scholar 

  45. Seo B, Sa YJ, Woo J, Kwon K, Park J, Shin TJ, Jeong HY, Joo SH (2016) Size-dependent activity trends combined with in situ X-ray absorption spectroscopy reveal insights into cobalt oxide/carbon nanotube catalyzed bifunctional oxygen electrocatalysis. ACS Catal 6(7):4347–4355. https://doi.org/10.1021/acscatal.6b00553

    Article  CAS  Google Scholar 

  46. Alburquenque D, Vargas E, Denardin J, Escrig J, Marco J, Ortiz J, Gautier J (2014) Physical and electrochemical study of cobalt oxide nano-and microparticles. Mater Charact 93:191–197. https://doi.org/10.1016/j.matchar.2014.02.015

    Article  CAS  Google Scholar 

  47. Batchelor-McAuley C, Compton RG (2014) Thin-film modified rotating disk electrodes: models of electron-transfer kinetics for passive and electroactive films. J Phys Chem C 118(51):30034–30038. https://doi.org/10.1021/jp5104593

    Article  CAS  Google Scholar 

  48. Pacuła A, Ikeda K, Masuda T, Uosaki K (2012) Examination of the electroactive composites containing cobalt nanoclusters and nitrogen-doped nanostructured carbon as electrocatalysts for oxygen reduction reaction. J Power Sources 220:20–30. https://doi.org/10.1016/j.jpowsour.2012.07.077

    Article  Google Scholar 

  49. Zhou R, Zheng Y, Jaroniec M, Qiao SZ (2016) Determination of electron transfer number for oxygen reduction reaction: from theory to experiment. ACS Catal 6(7):4720–4728. https://doi.org/10.1021/acscatal.6b01581

    Article  CAS  Google Scholar 

  50. Nikolic J, Expósito E, Iniesta J, González-Garcia J, Montiel V (2000) Theoretical concepts and applications of a rotating disk electrode. J Chem Educ 77(9):1191. https://doi.org/10.1021/ed077p1191

    Article  CAS  Google Scholar 

  51. Bagotsky VS (ed) (2005) Fundamentals of electrochemistry, 2nd edn. Wiley, New York. https://doi.org/10.1002/047174199X

    Google Scholar 

  52. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786. https://doi.org/10.1038/nmat3087

    Article  CAS  Google Scholar 

  53. Sönmez T, Thompson SJ, Price SW, Pletcher D, Russell AE (2016) Voltammetric studies of the mechanism of the oxygen reduction in alkaline media at the spinels Co3O4 and NiCo2O4. J Electrochem Soc 163(10):H884–H890. https://doi.org/10.1149/2.0111610jes

    Article  Google Scholar 

  54. Wang W, Zheng D, Du C, Zou Z, Zhang X, Xia B, Yang H, Akins DL (2007) Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J Power Sources 167(2):243–249. https://doi.org/10.1016/j.jpowsour.2007.02.013

    Article  CAS  Google Scholar 

  55. Fouda-Onana F, Bah S, Savadogo O (2009) Palladium–copper alloys as catalysts for the oxygen reduction reaction in an acidic media I: correlation between the ORR kinetic parameters and intrinsic physical properties of the alloys. J Electroanal Chem 636(1-2):1–9. https://doi.org/10.1016/j.jelechem.2009.06.023

    Article  CAS  Google Scholar 

  56. Liu R, Wu D, Feng X, Müllen K (2010) Nitrogen-doped oRDVred mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem 122(14):2619–2623. https://doi.org/10.1002/ange.200907289

    Article  Google Scholar 

  57. Masa J, Batchelor-McAuley C, Schuhmann W, Compton RG (2014) Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: electrocatalysis or misinterpretation. Nano Res 7(1):71–78. https://doi.org/10.1007/s12274-013-0372-0

    Article  CAS  Google Scholar 

  58. Eloul S, Batchelor-McAuley C, Compton RG (2014) Thin film-modified electrodes: a model for the charge transfer resistance in electrochemical impedance spectroscopy. J Solid State Electrochem 18(12):3239–3243. https://doi.org/10.1007/s10008-014-2662-1

    Article  CAS  Google Scholar 

  59. Lin Q, Li Q, Batchelor-McAuley C, Compton RG (2015) Two-electron, two-proton oxidation of catechol: kinetics and apparent catalysis. J Phys Chem C 119(3):1489–1495. https://doi.org/10.1021/jp511414b

    Article  CAS  Google Scholar 

  60. Iablokov V, Barbosa R, Pollefeyt G, Van Driessche I, Chenakin S, Kruse N (2015) Catalytic CO oxidation over well-defined cobalt oxide nanoparticles: size-reactivity correlation. ACS Catal 5(10):5714–5718. https://doi.org/10.1021/acscatal.5b01452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Detailed analysis and useful suggestions by the reviewers are gratefully acknowledged. C.A. Barbero, G.M. Morales, D.F. Acevedo, and G.A. Planes are permanent research fellows of CONICET. R. Coneo Rodriguez and A.M. Baena thank CONICET for graduate fellowships.

Funding

The work was funded by CONICET (PIP and PDTS-CIN) and SECYT-UNRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Barbero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coneo-Rodríguez, R., Baena-Moncada, A., Acevedo, D.F. et al. Electrocatalysis of As(III) oxidation by cobalt oxide nanoparticles: measurement and modeling the effect of nanoparticle amount on As(III) oxidation potential. J Solid State Electrochem 22, 1257–1267 (2018). https://doi.org/10.1007/s10008-017-3842-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3842-6

Keywords

Navigation