Skip to main content
Log in

Adaptive edge-preserving image denoising using wavelet transforms

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Image denoising is a relevant issue found in diverse image processing and computer vision problems. It is a challenge to preserve important features, such as edges, corners and other sharp structures, during the denoising process. Wavelet transforms have been widely used for image denoising since they provide a suitable basis for separating noisy signal from the image signal. This paper describes a novel image denoising method based on wavelet transforms to preserve edges. The decomposition is performed by dividing the image into a set of blocks and transforming the data into the wavelet domain. An adaptive thresholding scheme based on edge strength is used to effectively reduce noise while preserving important features of the original image. Experimental results, compared to other approaches, demonstrate that the proposed method is suitable for different classes of images contaminated by Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abreu E, Lighstone M, Mitra S, Arakawa K (1996) A new efficient approach for the removal of impulsive noise from highly corrupted images. IEEE Trans Image Process 5(6):1012–1025

    Article  Google Scholar 

  2. Garnett R, Huegerich T, Chui C, He W (2005) A universal noise removal algorithm with an impulse detector. IEEE Trans Image Process 14(11):1747–1754

    Article  Google Scholar 

  3. Gonzalez RC, Woods RE (2006) Digital image processing. Prentice-Hall, Upper Saddle River

  4. Pitas I, Venetsanooulos A (1990) Nonlinear digital filters: principles and applications, Kluwer, Boston

  5. Yüksel M, Bastürk A (2003) Efficient removal of impulse noise from highly corrupted digital images by a simple neuro-fuzzy operator. Int J Electron Commun 57(3):214–219

    Article  Google Scholar 

  6. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials sciences. Cambridge University Press, Cambridge

  7. Chambolle A, Vore RD, Lee NY, Lucier B (1998) Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans Image Process 7(3):319–335

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1–2):89–97

    MathSciNet  Google Scholar 

  9. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60:259–268

    Article  MATH  Google Scholar 

  10. Black MJ, Sapiro G, Marimont DH, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7(3):421–432

    Article  Google Scholar 

  11. Katkovnik V, Egiazarian K, Astola J (2006) Local approximation techniques in signal and image processing, vol. PM157, SPIE Press, USA

  12. Weickert J, ter Haar Romeny BM, Viergever MA (1998) Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Image Process 7(3):398–410

    Article  Google Scholar 

  13. Chan TF, Zhou HM (1999) Adaptive ENO-wavelet transforms for discontinuous functions, Technical Report 99-21, Computational and Applied Mathematics Technical Report, Department of Mathematics, UCLA (Jun. 1999)

  14. Egiazarian K, Astola J, Helsingius M, Kuosmanen P (1999) Adaptive denoising and lossy compression of images in transform domain. J Electron Imaging 8(3):233–245

    Article  Google Scholar 

  15. Dabov K, Foi A, Katkovnik V, Egiazarian K (2006) Image denoising with block-matching and 3D filtering. In: SPIE electronic imaging: algorithms and systems, vol. 6064, pp. 606414–1–606414–12

  16. Wongsawat Y, Rao K, Oraintara S (2005) Multichannel SVD-based image denoising. In: IEEE international symposium on circuits and systems, vol 6, pp 5990–5993

  17. Orchard J, Ebrahimi M, Wong A (2008) Efficient nonlocal-means denoising using the SVD. In: IEEE international conference on image processing. San Diego, CA, USA, pp 1732–1735

  18. Weyrich N, Warhola GT (1998) Wavelet shrinkage and generalized cross validation for image denoising. IEEE Trans Image Process 7(1):82–90

    Article  Google Scholar 

  19. Nason GP (1996) Wavelet shrinkage by cross-validation. J R Stat Soc B 58:463–479

    MathSciNet  MATH  Google Scholar 

  20. Chipman H, Kolaczyk E, McCulloch R (1997) Adaptive Bayesian wavelet shrinkage. J Am Stat Assoc 440(92):1413–1421

    Article  Google Scholar 

  21. Ruggeri F, Vidakovic B (1998) A Bayesian decision theoretic approach to wavelet thresholding. J Am Stat Assoc 93:173–179

    Article  Google Scholar 

  22. Vidakovic B (1998) Nonlinear wavelet shrinkage with bayes rules and bayes factors. J Am Stat Assoc 93(441):173–179

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang S, Yu B, Vetterli M (2000) Spatially adaptive wavelet thresholding based on context modeling for image denoising. IEEE Trans Image Process 9(9):1522–1531

    Article  MathSciNet  MATH  Google Scholar 

  24. Crouse MS, Nowak RD, Baraniuk RG (1998) Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans Signal Process 46(4):886–902

    Article  MathSciNet  Google Scholar 

  25. Fan G, Xia X (2001) Image denoising using local contextual hidden Markov model in the wavelet domain. IEEE Signal Process Lett 8(5):125–128

    Article  MathSciNet  Google Scholar 

  26. Liu J, Moulin P (2001) Complexity-regularized image denoising. IEEE Trans Image Process 10(6):841–851

    Article  MathSciNet  MATH  Google Scholar 

  27. Mihcak MK, Kozintsev I, Ramchandran K, Moulin P (1999) Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Process Lett 6(12):300–303

    Article  Google Scholar 

  28. Romberg JK, Choi H, Baraniuk RG (1999) Shift-invariant denoising using wavelet-domain hidden Markov trees. In: Conference record of the thirty-third asilomar conference on signals, systems and computers, pacific grove, CA, USA, pp 1277–1281

  29. Bao Q, Gao J, Chen W (2008) Local adaptive shrinkage threshold denoising using curvelet coefficients. Electron Lett 44(4):277–279

    Article  Google Scholar 

  30. Chang S, Yu B, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546

    Article  MathSciNet  MATH  Google Scholar 

  31. Choi H, Baraniuk R (1998) Analysis of wavelet-domain wiener filters. In: IEEE international symposium on time-frequency and time-scale analysis, Pittsburgh, PA, USA, pp 613–616

  32. Donoho DL, Johnstone IM (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrika 81:425–455

    Article  MathSciNet  MATH  Google Scholar 

  33. Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90(432):1200–1224

    Article  MathSciNet  MATH  Google Scholar 

  34. Ghael S, Ghael EP, Sayeed AM, Baraniuk RG (1997) Improved wavelet denoising via empirical wiener filtering. In: Proceedings of SPIE, vol 3169. San Diego, CA, USA, pp 389–399

  35. Kazubek M (2003) Wavelet domain image denoising by thresholding and wiener filtering. IEEE Signal Process Lett 10(11):324–326

    Article  Google Scholar 

  36. Pižurica A, Philips W (2006) Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Trans Image Process 15(3):654–665

    Article  Google Scholar 

  37. Portilla J, Strela V, Wainwright M, Simoncelli E (2003) Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans Image Process 12(11):1338–1351

    Article  MathSciNet  Google Scholar 

  38. Sendur L, Selesnick IW (2002) Bivariate shrinkage with local variance estimation. IEEE Signal Process Lett 9(12):438–441

    Google Scholar 

  39. Weaver J, Yansun X, Cromwell DHL (1991) Filtering noise from images with wavelet transforms. Magn Reson Med 21(2):288–295

    Article  Google Scholar 

  40. Malfati M, Roose D (1997) Wavelet-based image denoising using a Markov random field a priori model. IEEE Trans Image Process 6(4):549–565

    Article  Google Scholar 

  41. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  42. Yuan X, Buckles B (2004) Subband noise estimation for adaptive wavelet shrinkage. In: 17th international conference on pattern recognition, vol 4, pp 885–888

  43. Donoho DL, Johnstone IM (1998) Minimax estimation via wavelet shrinkage. Ann Stat 26(3):879–921

    Article  MathSciNet  MATH  Google Scholar 

  44. Jansen M (2001) Noise Reduction by wavelet thresholding. Springer-Verlag, New York, USA

  45. Antoniadis A (2007) Wavelet methods in statistics: some recent developments and their applications. Stat Surv 1:16–55

    Article  MathSciNet  MATH  Google Scholar 

  46. Gao HY, Bruce AG (1997) WaveShrink with firm shrinkage. Statistica Sinica 7:855–874

    MathSciNet  MATH  Google Scholar 

  47. Gao HY (1998) Wavelet shrinkage denoising using the non-negative garrote. J Comput Graph Stat 7(4):469–488

    Google Scholar 

  48. Antoniadis A, Fan J (2001) Regularization of wavelet approximations. J Am Stat Assoc 96(455):939–967

    Article  MathSciNet  MATH  Google Scholar 

  49. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  MATH  Google Scholar 

  50. Caltech, Caltech 256 (2011) http://www.vision.caltech.edu/Image_Datasets/Caltech256/images/. Accessed 13 July 2011

  51. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  52. Pratt W (1978) Digital image processing. Wiley, New York

  53. Nason GP, Silverman BW (1995) The stationary wavelet transform and some statistical applications. In: Lecture notes in statistics: wavelets and statistics, Springer-Verlag, Berlin, pp 281–300

Download references

Acknowledgments

The authors are thankful to FAPESP, CNPq and CAPES for the financial support. This research was partially supported by FAPESP Grant 2010/10618-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Robson Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, R.D., Minetto, R., Schwartz, W.R. et al. Adaptive edge-preserving image denoising using wavelet transforms. Pattern Anal Applic 16, 567–580 (2013). https://doi.org/10.1007/s10044-012-0266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-012-0266-x

Keywords

Navigation