Skip to main content

Advertisement

Log in

Effect of low-level laser therapy after rapid maxillary expansion: a clinical investigation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

To evaluate the effectiveness low-level laser therapy (LLLT) on the repair of the mid palatal suture, after rapid maxillary expansion (RME). A single-operator, randomized single-blind placebo-controlled study was performed at the Orthodontic Department at the Dental Hospital of Bellvitge. Barcelona University, Hospitalet de Llobregat, Spain. Thirty-nine children (range 6–12 years old), completed RME and were randomized to receive active LLLT (n = 20) or placebo (n = 19). The laser parameters and dose were 660 nm, 100 mW, CW, InGaAlP laser, illuminated area 0.26 cm2, 332 mW/cm2, 60 s to four points along midpalatal suture, and 30 s to a point each side of the suture. A total of seven applications were made on days 1, 7, 14, 28, 42, 56, and 70 of the retention phase RME. A cone beam computed tomography (CBCT) scan was carried out on the day of the first laser treatment, and at day 75, a second CBCT scan was performed. Two radiologists synchronized the slices of two scans to be assessed. P = 0.05 was considered to be statistically significant. At day 75 of the suture, the irradiated patients presented a greater percentage of approximate zones in the anterior (p = 0.008) and posterior (p = 0.001) superior suture—and less approximation in the posterior superior suture (p = 0.040)—than the placebo group. LLLT appears to stimulate the repair process during retention phase after RME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bishara SE, Staley RN (1987) Maxillary expansion: clinical implications. Am J Orthod Dentofacial Orthop 91:3–14

    Article  CAS  PubMed  Google Scholar 

  2. Thilander B, Wahlund S, Lennartsson B (1984) The effect of early interceptive treatment in children with posterior cross-bite. Eur J Orthod 6:25–34

    Article  CAS  PubMed  Google Scholar 

  3. Ong SC, Khambay BS, McDonald JP, Cross DL, Brocklebank LM, Ju X (2015) The novel use of three-dimensional surface models to quantify and visualize the immediate changes of the mid-facial skeleton following rapid maxillary expansion. Surgeon 13:132–138. doi:10.1016/j.surge.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  4. Garrett BJ, Caruso JM, Rungcharassaeng K, Farrage JR, Kim JS, Taylor GD (2008) Skeletal effects to the maxilla after rapid maxillary expansion assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 134:8–9. doi:10.1016/j.ajodo.2008.06.004

    Article  PubMed  Google Scholar 

  5. Sun G, Tunér J (2004) Low-level laser therapy in dentistry. Dent Clin N Am 48:1061–1076

    Article  PubMed  Google Scholar 

  6. Kobayashi Y, Takagi H, Sakai H, Hashimoto F, Mataki S, Kobayashi K, Kato Y (1988) Effects of local administration of osteocalcin on experimental tooth movement. Angle Orthod 68:259–266

    Google Scholar 

  7. Andrade Gomes do Nascimento LE, Sant’anna EF, Carlos de Oliveira Ruellas A, Issamu Nojima L, Gonçalves Filho AC, Antônio Pereira Freitas S (2013) Laser versus ultrasound on bone density recuperation after distraction osteogenesis—a cone-beam computer tomographic analysis. J Oral Maxillofac Surg 71:921–928. doi:10.1016/j.joms.2012.11.010

    Article  PubMed  Google Scholar 

  8. Murphy G, Wilkco T, Wilcko W, Ferguson DK (2009) Periodontal accelerated osteogenic orthodontics: a description of the surgical technique. J Oral Maxillofac Surg 67:2160–2166. doi:10.1016/j.joms.2009.04.124

    Article  PubMed  Google Scholar 

  9. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 111:525–532

    Article  CAS  PubMed  Google Scholar 

  10. Angeletti P, Gomes HC, Ferreira LM (2010) Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:38–46. doi:10.1016/j.tripleo.2009.10.043

    Article  Google Scholar 

  11. Cepera F, Torres FC, Scanavini MA, Paranhos LR, Capelozza Filho L, Cardoso MA, Siqueira DC, Siqueira DF (2012) Effect of a low-level laser on bone regeneration after rapid maxillary expansion. Am J Orthod Dentofac Orthop 141:444–450. doi:10.1016/j.ajodo.2011.10.023

    Article  Google Scholar 

  12. Takeda Y (1988) Irradiation effect of low-energy laser on alveolar bone after tooth extraction: experimental study in rats. Int J Oral Maxillofac Surg 17:388–391

    Article  CAS  PubMed  Google Scholar 

  13. Hassel B, Farman AG (1995) Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofac Orthop 107:58–66

    Article  CAS  Google Scholar 

  14. Altan AB, Bicakci AA, Avunduk MC, Esen H (2015) The effect of dosage on the efficiency of LLLT in new bone formation at the expanded suture in rats. Lasers Med Sci 30:255–262. doi:10.1007/s10103-014-1645-x

    Article  PubMed  Google Scholar 

  15. Petrick S, Hothan T, Hietschold V, Schneider M, Harzer W, Tausche E (2011) Bone density of the midpalatal suture 7 months after surgically assisted rapid palatal expansion in adults. Am J Orthod Dentofacial Orthop 139:S109–16. doi:10.1016/j.ajodo.2009.12.031

    Article  PubMed  Google Scholar 

  16. Kara IM, Erciyes K, Altan AB, Ozkut M, Ay S, Inan S (2012) Thymoquinone accelerates new bone formation in the rapid maxillary expansion procedure. Arch Oral Biol 57:357–363. doi:10.1016/j.archoralbio.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  17. Masha RT, Houreld NN, Abrahamse H (2013) Low-intensity laser irradiation at 660nm stimulates transcription of genes involved in the electron transport chain. Photomed Laser Surg 31:47–53. doi:10.1089/pho.2012.3369

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki A, Touma Y, Ishino Y, Tanaka E, Aoyama J, Hanaoka K, Watanabe M, Tanne K (2003) Linear polarized near-infrared irradiation stimulates mechanical expansion of the rat sagittal suture. Luminescence 18:58–60

    Article  PubMed  Google Scholar 

  19. Lione R, Franchi L, Fanucci E, Laganà G, Cozza P (2013) Three-dimensional densitometric analysis of maxillary sutural changes induced by rapid maxillary expansion. Dentomaxillofac Radiol 42:20120376. doi:10.1259/dmfr/71798010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wehrbein H, Yildizhan F (2001) The mid-palatal suture in young adults. A radiological-histological investigation. Eur J Orthod 23:105–114

    Article  CAS  PubMed  Google Scholar 

  21. Chang HW, Huang HL, Yu JH, Hsu JT, Li YF, Wu YF (2012) Effects of orthodontic tooth movement on alveolar bone density. Clin Oral Investig 16:679–688. doi:10.1007/s00784-011-0552-9

    Article  PubMed  Google Scholar 

  22. Eskandarloo A, Abdinian M, Salemi F, Hashemzadeh Z, Safaei M (2012) Effect of object location on the density measurement in cone-beam computed tomography versus multislice computed tomography. Dent Res J 9:S81–S7

    Google Scholar 

  23. Hua Y, Nackaerts O, Duyck J, Maes F, Jacobs R (2009) Bone quality assessment based on cone beam computed tomography imaging. Clin Oral Implants Res 20:767–771. doi:10.1111/j.1600-0501.2008.01677.x

    Article  PubMed  Google Scholar 

  24. Bazargani F, Feldman I, Bondemark L (2013) Three-dimensional analysis of effects of rapid maxillary expansion on facial sutures and bones. Angle Orthod 83:1074–1082. doi:10.2319/020413-103.1

    Article  PubMed  Google Scholar 

  25. de Melo MB, Melo SL, Zanet TG, Fenyo-Pereira M (2013) Digital radiographic evaluation of the midpalatal suture in patients submitted to rapid maxillary expansion. Indian J Dent Res 24:76–80. doi:10.4103/0970-9290.114960

    Article  PubMed  Google Scholar 

  26. Schauseil M, Ludwig B, Zorkun B, Hellak A, Korbmacher-Steiner H (2014) Density of the midpalatal suture after RME treatment—a retrospective comparative low-dose CT-study. Head Face Med 20:10–8

    Google Scholar 

  27. Arat ZM, Gökalp H, Atasever T, Türkkahraman H (2013) 99m Technetium-labeled methylene diphosphonate uptake in maxillary bone during and after rapid maxillary expansion. Angle Orthod 73:545–549

    Google Scholar 

  28. Aras MH, Bozdag Z, Demir T, Oksayan R, Yanik S, Sökücü O (2015) Effects of low-level laser therapy on changes in inflamation and in the activity of osteoblasts in the expanded premaxillary suture in an ovariectomized rat model. Photomed Laser Surg 33:136–144. doi:10.1089/pho.2014.3820

    Article  PubMed  Google Scholar 

  29. Santiago VC, Piram A, Fuziy A (2012) Effect of soft laser in bone repair after expansion of the midpalatal suture in dogs. Am J Orthod Dentofacial Orthop 142:615–624. doi:10.1016/j.ajodo.2012.05.015

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the subjects who volunteered for this study, Christopher Showers for providing help with proofreading the article, and Sara Calvo for help with biostatistics. This trial was supported by the Dental Hospital of Bellvitge, Barcelona University, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Javier Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, V.J., Arnabat, J., Comesaña, R. et al. Effect of low-level laser therapy after rapid maxillary expansion: a clinical investigation. Lasers Med Sci 31, 1185–1194 (2016). https://doi.org/10.1007/s10103-016-1970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-016-1970-3

Keywords

Navigation