Skip to main content
Log in

Progression of cyclophosphamide-induced acute renal metabolic damage in carnitine-depleted rat model

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Little information is available regarding the mechanism of cyclophosphamide (CP)-induced renal damage. Therefore, this study examined whether carnitine deficiency constitutes a risk factor in and should be viewed as a mechanism during development of CP-induced nephrotoxicity and explored whether carnitine supplementation, using propionyl-l-carnitine (PLC), could offer protection against this toxicity.

Methods

Experimental rats were assigned to one of six groups; the first three groups were injected intraperitoneally with normal saline, PLC (250 mg/kg/day) or d-carnitine (250 mg/kg/day) + Mildronate (200 mg/kg/day), respectively, for 10 successive days. The 4th, 5th and 6th groups received the same doses of normal saline, PLC or d-carnitine + Mildronate, respectively, for 5 successive days before and after a single dose of CP (200 mg/kg).

Results

CP significantly increased serum creatinine, blood urea nitrogen (BUN), intramitochondrial acetyl-coenzyme A (CoA) and thiobarbituric acid reactive substances, significantly decreased total carnitine, intramitochondrial CoA-SH, adenosine triphosphate (ATP) and ATP/adenosine diphosphate (ADP) and reduced glutathione in kidney tissues. In carnitine-depleted rats, CP resulted in dramatic increase in serum nephrotoxicity indices and acetyl-CoA and induced progressive reduction in total carnitine, CoA-SH and ATP as well as severe histopathological lesions in kidney tissues. Interestingly, PLC completely reversed the biochemical and histopathological changes induced by CP to normal values.

Conclusions

Oxidative stress is not involved in CP-induced renal injury in this model. Carnitine deficiency and energy starvation constitute risk factors in and should be viewed as a mechanism during CP-induced nephrotoxicity. PLC prevents development of CP-induced nephrotoxicity by increasing intracellular carnitine content, intramitochondrial CoA-SH/acetyl-CoA ratio and energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Preiss R, Baumann F. Cyclophosphamide and related anticancer drugs. J Chromatogr B Biomed Sci Appl. 2001;764:173–92.

    Article  PubMed  Google Scholar 

  2. Murphy SB, Bowman WP, Abromowitch M, Mirro J, Ochs J, Rivera G, et al. Results of treatment of advanced-stage Burkitt’s lymphoma and B cell (SIg+) acute lymphoblastic leukemia with high-dose fractionated cyclophosphamide and coordinated high-dose methotrexate and cytarabine. J Clin Oncol. 1986;4:1732–9.

    CAS  PubMed  Google Scholar 

  3. Luo XO, Mo Y, Ke ZY, Xu L, Jiang XY, Zhang TT, et al. High-dose chemotherapy without stem cell transplantation for refractory childhood systemic lupus erythematosus. Chemotherapy. 2008;54:331–5.

    Article  CAS  PubMed  Google Scholar 

  4. Nissim I, Weinberg JM. Glycine attenuates maleate or ifosfamide induced Fanconi syndrome in rats. Kidney Int. 1996;49:684–95.

    Article  CAS  PubMed  Google Scholar 

  5. Badary OA. Thymoquinone attenuates ifosfamide-induced Fanconi syndrome in rats and enhances its antitumor activity in mice. J Ethnopharmacol. 1999;67:135–42.

    Article  CAS  PubMed  Google Scholar 

  6. Nissim I, Horyn O, Daikhin Y, Nissim I, Luhovyy B, Phillips BC, et al. Ifosfamide-induced nephrotoxicity: mechanism and prevention. Cancer Res. 2006;66:7824–31.

    Article  CAS  PubMed  Google Scholar 

  7. Yaseen Z, Michoudet C, Baverel G, Dubourg L. Mechanisms of the ifosfamide-induced inhibition of endocytosis in the rat proximal kidney tubule. Arch Toxicol. 2008;82:607–14.

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima Y, Sassa K, Hamazaki T, Fujishita T, Oosaki R, Kobayashi M. Diuretic response to cyclophosphamide in rats bearing a matrix metalloproteinase-9-producing tumour. BJC. 1998;78:1030–4.

    CAS  PubMed  Google Scholar 

  9. Stankiewicz A, Skrzydlewska E. Protection against cyclophosphamide-induced renal oxidative stress by amifostine: the role of antioxidative mechanisms. Toxicol Mech Methods. 2003;13:301–8.

    Article  CAS  PubMed  Google Scholar 

  10. Abraham P, Indirani K, Sugumar E. Effect of cyclophosphamide treatment on selected lysosomal enzymes in the kidney of rats. Exp Toxicol Pathol. 2007;59:143–9.

    Article  CAS  PubMed  Google Scholar 

  11. Abraham P, Sugumar E. Enhanced PON1 activity in the kidneys of cyclophosphamide treated rats may play a protective role as an antioxidant against cyclophosphamide induced oxidative stress. Arch Toxicol. 2008;82:237–8.

    Article  CAS  PubMed  Google Scholar 

  12. Abraham P, Rabi S. Nitrosative stress, protein tyrosine nitration, PARP activation and NAD depletion in the kidneys of rats after single dose of cyclophosphamide. Clin Exp Nephrol. 2009;13:281–7.

    Article  PubMed  Google Scholar 

  13. Ayhanci A, Günes S, Sahinturk V, Appak S, Uyar R, Cengiz M, et al. Seleno l-methionine acts on cyclophosphamide-induced kidney toxicity. Biol Trace Elem Res. 2009;136(2):171–9.

    Article  PubMed  Google Scholar 

  14. Fatani AG, Darweesh AQ, Rizwan L, Aleisa AM, Al-Shabanah OA, Sayed-Ahmed MM. Carnitine deficiency aggravates cyclophosphamide-induced cardiotoxicity in rats. Chemotherapy. 2010;56:71–81.

    Article  CAS  PubMed  Google Scholar 

  15. Kerner J, Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta. 2000;1486:1–17.

    CAS  PubMed  Google Scholar 

  16. Mancinelli A, Longo A, Shanahan K, Evans AM. Disposition of l-carnitine and acetyl-l-carnitine in the isolated perfused rat kidney. J Pharmacol Exp Ther. 1995;274:1122–8.

    CAS  PubMed  Google Scholar 

  17. Paulson DJ, Shug AL. Tissue specific depletion of l-carnitine in rat heart and skeletal muscle by d-carnitine. Life Sci. 1981;28:2931–8.

    Article  CAS  PubMed  Google Scholar 

  18. Whitmer JT. l-carnitine treatment improves cardiac performance and restores high energy phosphate pools in cardiomyopathic Syrian hamster. Circ Res. 1987;61:396–408.

    CAS  PubMed  Google Scholar 

  19. Tsoko M, Beau-Seigneur F, Greste J, Niot I, Demarquoy J, Biochot J, et al. Enhancement of activities relative to fatty acid oxidation in the liver of rats depleted of l-carnitine by d-carnitine and a γ-butyrobetaine hydroxylase inhibitor. Biochem Pharmacol. 1995;49:1403–10.

    Article  CAS  PubMed  Google Scholar 

  20. Kuwajima M, Harashima H, Hayashi M, Ise S, Sei M, Lu K, et al. Pharmacokinetic analysis of the cardioprotective effect of 3-(2, 2, 2-trimethylhydrazinium) propionate in mice: inhibition of carnitine transport in kidney. J Pharmacol Exp Ther. 1999;289:93–102.

    CAS  PubMed  Google Scholar 

  21. Spaniol M, Brooks H, Auer L, Zimmermann A, Solioz M, Stieger B, et al. Development and characterization of an animal model of carnitine deficiency. Eur J Biochem. 2001;268:1876–87.

    Article  CAS  PubMed  Google Scholar 

  22. Peschechera A, Scalibastri M, Russo F, Giarrizzo MG, Carminati P, Giannessi F, et al. Carnitine depletion in rat pups from mothers given mildronate: a model of carnitine deficiency in late fetal and neonatal life. Life Sci. 2005;77:3078–91.

    Article  CAS  PubMed  Google Scholar 

  23. Tobacco A, Meiattini F, Moda E, Tarii P. Simplified enzymic/colorimetric serum urea nitrogen determination. Clin Chem. 1979;25:336–7.

    Google Scholar 

  24. Fabiny DL, Ertingshausen G. Automated reaction-rate method for determination of serum creatinine with the Centrifichem. Clin Chem. 1971;17:696–700.

    CAS  PubMed  Google Scholar 

  25. Ellman GL. Tissue sulfahydryl groups. Arch Biochem Biophys. 1959;82:70–7.

    Article  CAS  PubMed  Google Scholar 

  26. Ohkawa H, Ohish N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid. Anal Biochem. 1979;95:351–8.

    Article  CAS  PubMed  Google Scholar 

  27. Botker HE, Kimose M, Helligso P, Nielsen TT. Analytical evaluation of high-energy phosphate determination by high performance liquid chromatography in myocardial tissue. J Mol Cell Cardiol. 1994;26:41–8.

    Article  CAS  PubMed  Google Scholar 

  28. Prieto JA, Andrade F, Aldmiz-Echevarra L, Sanjurjo P. Determination of free and total carnitine in plasma by an enzymatic reaction and spectrophotometric quantitation spectrophotometric determination of carnitine. Clin Biochem. 2006;39:1022–7.

    Article  CAS  PubMed  Google Scholar 

  29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  30. Lysiak W, Lilly K, DiLisa F, Toth PP, Bieber LL. Quantitation of the effect of l-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. J Biol Chem. 1988;263:1151–6.

    CAS  PubMed  Google Scholar 

  31. Senthilkumar S, Devaki T, Manohar BM, Babu MS. Effect of squalene on cyclophosphamide-induced toxicity. Clin Chim Acta. 2006;364:335–42.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed S, Thomas H, Golper TA, Wolfson M, Kurtin P, Katz LA, et al. Multi-center trial of l-carnitine in maintenance hemodialysis patients II. Clinical and biochemical effects. Kidney Int. 1990;38:912–8.

    Article  Google Scholar 

  33. Marthaler NP, Visarius T, Küpfer A, Lauterburg BH. Increased urinary losses of carnitine during ifosfamide chemotherapy. Cancer Chemother Pharmacol. 1999;44:170–2.

    Article  CAS  PubMed  Google Scholar 

  34. Heuberger W, Berardi S, Jacky E, Pey P, Krahenbuhl S. Increased urinary excretion of carnitine in patients treated with cisplatin. Eur J Clin Pharmacol. 1998;54:503–8.

    Article  CAS  PubMed  Google Scholar 

  35. Arafa HM. Carnitine deficiency aggravates carboplatin nephropathy through deterioration of energy status, oxidant/anti-oxidant balance, and inflammatory endocoids. Toxicol. 2008;254:51–60.

    Article  CAS  Google Scholar 

  36. Sayed-Ahmed MM, Eissa MA, Kenawy SA, Mostafa N, Calvani M, Osman AM. Progression of cisplatin-induced nephrotoxicity in a carnitine-depleted rat model. Chemotherapy. 2004;50:162–70.

    Article  CAS  PubMed  Google Scholar 

  37. Al-Shabanah OA, Aleisa AM, Al-Yahya AA, Al-Rejaie SS, Bakheet SA, Fatani AG, et al. Increased urinary losses of carnitine and decreased intramitochondrial coenzyme A in gentamicin-induced acute renal failure in rats. Nephrol Dial Transplant. 2010;25:69–76.

    Article  CAS  PubMed  Google Scholar 

  38. Steiber A, Kerner J, Hoppel CL. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med. 2004;25:455–73.

    Article  CAS  PubMed  Google Scholar 

  39. Abdel-aleem S, Nada MA, Sayed-Ahmed MM, Hendrickson SC, St Louis J, Walthall HP, et al. Regulation of fatty acid oxidation by acetyl-CoA generated from glucose utilization in isolated myocytes. J Mol Cell Cardiol. 1996;28:825–33.

    Article  CAS  PubMed  Google Scholar 

  40. Dayanandan A, Kumar P, Panneerselvam C. Protective role of l-carnitine on liver and heart lipid peroxidation in atherosclerotic rats. J Nutr Biochem. 2001;12:254–7.

    Article  CAS  PubMed  Google Scholar 

  41. Sayed-Ahmed MM, Khattab MM, Gad MZ, Mostafa N. l-carnitine prevents the progression of atherosclerotic lesions in hypercholesterolaemic rabbits. Pharmacol Res. 2001;44:235–42.

    Article  CAS  PubMed  Google Scholar 

  42. Sayed-Ahmed MM, Mansour HH, Gharib OA, Hafez HF. Acetyl-l-carnitine modulates bleomycin-induced oxidative stress and energy depletion in lung tissues. J Egypt Natl Cancer Inst. 2004;16:237–43.

    Google Scholar 

  43. Al-Majed AA, Sayed-Ahmed MM, Al-Yahya AA, Aleisa AM, Al-Rejaie SS, Al-Shabanah OA. Propionyl-l-carnitine prevents the progression of cisplatin-induced cardiomyopathy in a carnitine-depleted rat model. Pharmacol Res. 2006;53:278–86.

    Article  CAS  PubMed  Google Scholar 

  44. Al-Rejaie SS, Aleisa AM, Al-Yahya AA, Bakheet SA, Alsheikh A, Fatani AG, et al. Progression of diethylnitrosamine-induced hepatic carcinogenesis in carnitine-depleted rats. World J Gastroenterol. 2009;15:1373–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Author of this study are grateful to Dr. Zaven Orfalin, Sigma-Tau Pharmaceuticals, Pomezia, Italy, for providing PLC, d-carnitine and Mildronate. The present work was supported by an operating grant from the Research Center, College of Pharmacy, King Saud University (CPRC080144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Sayed-Ahmed.

About this article

Cite this article

Sayed-Ahmed, M.M. Progression of cyclophosphamide-induced acute renal metabolic damage in carnitine-depleted rat model. Clin Exp Nephrol 14, 418–426 (2010). https://doi.org/10.1007/s10157-010-0321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-010-0321-0

Keywords

Navigation