Skip to main content
Log in

Absolute quantitation of brain metabolites with respect to heterogeneous tissue compositions in 1H-MR spectroscopic volumes

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Referencing metabolite intensities to the tissue water intensity is commonly applied to determine metabolite concentrations from in vivo 1H-MRS brain data. However, since the water concentration and relaxation properties differ between grey matter, white matter and cerebrospinal fluid (CSF), the volume fractions of these compartments have to be considered in MRS voxels.

Materials and methods

The impact of partial volume correction was validated by phantom measurements in voxels containing mixtures of solutions with different NAA and water concentrations as well as by analyzing in vivo 1H-MRS brain data acquired with various voxel compositions.

Results

Phantom measurements indicated substantial underestimation of NAA concentrations when assuming homogeneously composed voxels, especially for voxels containing solution, which simulated CSF (error: ≤92%). This bias was substantially reduced by taking into account voxel composition (error: ≤10%). In the in vivo study, tissue correction reduced the overall variation of quantified metabolites by up to 35% and revealed the expected metabolic differences between various brain tissues.

Conclusions

Tissue composition affects extraction of metabolite concentrations and may cause misinterpretations when comparing measurements performed with different voxel sizes. This variation can be reduced by considering the different tissue types by means of combined analysis of spectroscopic and imaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

1H-MRS:

Proton magnetic resonance spectroscopy

rf:

Radiofrequency

T 1 and T 2 :

Longitudinal and transversal relaxation time constants

C M, C W :

Absolute concentrations of metabolites and water

I M :

Quantitated intensity of metabolite

I W :

Quantitated intensity of water

N protM :

Number of hydrogen nuclei within the metabolite molecule

GM, WM, CSF:

Brain’s grey and white matter and cerebrospinal fluid

S1, S2, S3:

Phantom solutions 1, 2 and 3

f GM, f WM, f CSF :

Relative volume fractions of GM, WM and CSF within a voxel

f S1, f S2, f S3 :

Relative volume fractions of GM, WM and CSF within a voxel

R :

Factor to consider the relaxation related signal attenuation

C 0W :

Free water concentration

α:

Relative water content in tissue

NAA, Cr, tCho:

N-acetyl-aspartate, creatine, total choline

C solutionW :

Nominal water concentration in a phantom solution

C solutionnom :

Nominal NAA concentration in a phantom solution

TR, TE, TI:

Repetition time, echo time, inversion time

FOV:

Field of view

GI, GII:

Volunteer groups 1 and 2 (each consisting of seven persons)

NAS:

Number of averaged single acquisitions

SNR:

Signal to noise ratio

FWHM:

Full width at half maximum

CRLB:

Cramer Rao lower bound

C hom :

Metabolite concentration calculated by assuming homogeneous tissue composition in MRS voxel

C het :

Metabolite concentration calculated by considering the heterogeneous tissue composition in MRS voxel

References

  1. Mountford CE, Stanwell P, Lin A, Ramadan S, Ross B (2010) Neurospectroscopy: the past, present and future. Chem Rev 110(5):3060–3086

    Article  PubMed  CAS  Google Scholar 

  2. Mason GF, Krystal JH (2006) MR spectroscopy: its potential role for drug development for the treatment of psychiatric diseases. NMR Biomed 19(6):690–701

    Article  PubMed  CAS  Google Scholar 

  3. Gussew A, Rzanny R, Güllmar D, Scholle H-C, Reichenbach JR (2011) 1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain. Neuroimage 54(2):1315–1323

    Article  PubMed  Google Scholar 

  4. Reinert M, Schneider P, Hofmann E, Semmler W (2010) Quantitative MR-spectroscopy: implementation and quality assurance on a clinical MR-scanner. Z Med Phys 20(3):176–187

    PubMed  Google Scholar 

  5. Jansen JFA, Backes WH, Nicolay K, Kooi ME (2006) 1H-MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 240(2):318–332

    Article  PubMed  Google Scholar 

  6. Ernst T, Kreis R, Ross B (1993) Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson B 102:1–8

    Article  CAS  Google Scholar 

  7. Mlynárik V, Gruber S, Moser E (2001) Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14(5):325–331

    Article  PubMed  Google Scholar 

  8. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54(3):507–512

    Article  PubMed  Google Scholar 

  9. Gasparovic C, Song T, Devier D, Bockholt HJ, Caprihan A, Mullins PG, Posse S, Jung RE, Morrison LA (2006) Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med 55(6):1219–1226

    Article  PubMed  CAS  Google Scholar 

  10. Hetherington HP, Pan JW, Mason GF, Adams D, Vaughn MJ, Twieg DB, Pohost GM (1996) Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36(1):21–29

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, Li SJ (1998) Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 39(1):28–33

    Article  PubMed  CAS  Google Scholar 

  12. Noworolski SM, Nelson SJ, Henry RG, Day MR, Wald LL, Star-Lack J, Vigneron DB (1999) High spatial resolution 1H-MRSI and segmented MRI of cortical gray matter and subcortical white matter in three regions of the human brain. Magn Reson Med 41(1):21–29

    Article  PubMed  CAS  Google Scholar 

  13. Brooks JCW, Roberts N, Kemp GJ, Gosney MA, Lye M, Whitehouse GH (2001) A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex 11:598–605

    Article  PubMed  CAS  Google Scholar 

  14. Weber-Fahr W, Ende G, Braus DF, Bachert P, Soher BJ, Henn FA, Büchel C (2002) A fully automated method for tissue segmentation and CSF correction of proton MRSI metabolites corroborates abnormal hippocampal NAA in schizophrenia. Neuroimage 16(1):49–60

    Article  PubMed  CAS  Google Scholar 

  15. Neuroimaging Informatics Technology Initiative. http://nifti.nimh.nih.gov/. Accessed April 2009

  16. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9(2):179–194

    Article  PubMed  CAS  Google Scholar 

  17. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207

    Article  PubMed  CAS  Google Scholar 

  18. Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14(1):26–30

    Article  PubMed  CAS  Google Scholar 

  19. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679

    Article  PubMed  CAS  Google Scholar 

  20. Seeger U, Klose U, Mader I, Grodd W, Nägele T (2003) Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med 49:19–28

    Article  PubMed  CAS  Google Scholar 

  21. Lin C, Bernstein M, Huston J, Fain S (2001) Measurements of T1 relaxation times at 3.0: implications for clinical MRA. In: Proceedings of international society for magnetic resonance in medicine. 11, 21–27 Apr 2001, Glasgow, Scotland, p 1391

  22. Piechnik SK, Evans J, Bary LH, Wise RG, Jezzard P (2009) Functional changes in CSF volume estimated using measurement of water T2 relaxation. Magn Reson Med 61(3):579–586

    Article  PubMed  CAS  Google Scholar 

  23. Zaaraoui W, Fleysher L, Fleysher R, Liu S, Soher BJ, Gonen O (2007) Human brain-structure resolved T2 relaxation times of proton metabolites at 3 Tesla. Magn Reson Med 57(6):983–989

    Article  PubMed  CAS  Google Scholar 

  24. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Cramér-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14(4):278–283

    Article  PubMed  CAS  Google Scholar 

  25. Pohmann R, von Kienlin M (2001) Accurate phosphorus metabolite images of the human heart by 3D acquisition-weighted CSI. Magn Reson Med 45:817–826

    Article  PubMed  CAS  Google Scholar 

  26. Malucelli E, Manners DN, Testa C, Tonon C, Lodi R, Barbiroli B, Iotti S (2009) Pitfalls and advantages of different strategies for the absolute quantification of n-acetyl aspartate, creatine and choline in white and grey matter by 1H-MRS. NMR Biomed 22(10):1003–1013

    PubMed  CAS  Google Scholar 

  27. Brief EE, Moll R, Li DKB, Mackay AL (2009) Absolute metabolite concentrations calibrated using the total water signal in brain 1H-MRS. NMR Biomed 22(3):349–354

    Article  PubMed  CAS  Google Scholar 

  28. Natt O, Bezkorovaynyy V, Michaelis T, Frahm J (2005) Use of phased array coils for a determination of absolute metabolite concentrations. Magn Reson Med 53(1):3–8

    Article  PubMed  CAS  Google Scholar 

  29. Tofts PS, du Boulay EP (1990) Towards quantitative measurements of relaxation times and other parameters in the brain. Neuroradiology 32(5):407–415

    Article  PubMed  CAS  Google Scholar 

  30. Papanikolaou N, Papadaki E, Karampekios S, Spilioti M, Maris T, Prassopoulos P, Gourtsoyiannis N (2004) T2 relaxation time analysis in patients with multiple sclerosis: correlation with magnetization transfer ratio. Eur Radiol 14:115–122

    Article  PubMed  Google Scholar 

  31. Parry A, Clare S, Jenkinson M, Smith S, Palace J, Matthews PM (2002) White matter and lesion T1 relaxation times increase in parallel and correlate with disability in multiple sclerosis. J Neurol 249:1279–1286

    Article  PubMed  CAS  Google Scholar 

  32. Ashton EA, Takahashi C, Berg MJ, Goodman A, Totterman S, Ekholm S (2003) Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI. J Magn Reson Imaging 17(3):300–308

    Article  PubMed  Google Scholar 

  33. Deeley MA, Chen A, Datteri R, Noble JH, Cmelak AJ, Donnelly EFR, Malcolm AW, Moretti L, Jaboin J, Niermann K, Yang ES, Yu DS, Yei F, Koyama T, Ding GX, Dawant BM (2011) Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study. Phys Med Biol 56:4557–4577

    Article  PubMed  CAS  Google Scholar 

  34. Martín-Landrove M, Mayobre F, Bautista I, Villalta R (2005) Brain tumor evaluation and segmentation by in vivo proton spectroscopy and relaxometry. Magn Reson Mater Phys Biol Med 18(6):316–331

    Google Scholar 

  35. Pollo C, Cuadra MB, Cuisenaire O, Villemure JG, Thiran JP (2005) Segmentation of brain structures in presence of a space-occupying lesion. Neuroimage. 24(4):990–996

    Article  PubMed  Google Scholar 

  36. Gasparovic C, Neeb H, Feis DL, Damaraju E, Chen H, Doty MJ, South DM, Mullins PG, Bockholt HJ, Shah NJ (2009) Quantitative spectroscopic imaging with in situ measurements of tissue water T1, T2, and density. Magn Reson Med 62(3):583–590

    Article  PubMed  CAS  Google Scholar 

  37. Jenkinson M, Smith SM (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    Article  PubMed  CAS  Google Scholar 

  38. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. NeuroImage 45:S173–S186

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Centre for Interdisciplinary Prevention of Diseases related to Professional Activities (KIP) founded by the Friedrich-Schiller-University Jena and the Accident Prevention and Insurance Association for Food and Restaurants (Berufsgenossenschaft Nahrungsmittel und Gaststätten, BGN, Germany). A. G. acknowledges support from a stipend provided by KIP (project 1.1.29). This project was also supported by the Deutsche Forschungsgemeinschaft (DFG 1123/11-1) and by the Bernstein Group for Computational Neuroscience Jena (BMBF 01GQ0703). We acknowledge Mary Atterbury for her support in manuscript preparation and proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gussew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gussew, A., Erdtel, M., Hiepe, P. et al. Absolute quantitation of brain metabolites with respect to heterogeneous tissue compositions in 1H-MR spectroscopic volumes. Magn Reson Mater Phy 25, 321–333 (2012). https://doi.org/10.1007/s10334-012-0305-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0305-z

Keywords

Navigation