Skip to main content
Log in

Creating semantics in tool use

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

This article presents the first evidence for a functional link between tool use and the processing of abstract symbols like Arabic numbers. Participants were required to perform a tool-use task after the processing of an Arabic number. These numbers represented either a small (2 or 3) or a large magnitude (8 or 9). The tool-use task consisted in using inverse pliers for gripping either a small or a large object. The inverse pliers enable to dissociate the hand action from the tool action in relation to the object (i.e., closing the hand led to an opening of the tool and vice versa). The number/tool hypothesis predicts that the quantity representation associated with Arabic numbers will interact with the action of the tool toward the object. Conversely, the number/hand hypothesis predicts that the quantity associated with numbers will interact with the action of the hand toward the tool. Results confirmed the first hypothesis and rejected the second. Indeed, large numbers interacted with the action of the tool, such that participants were longer to perform an “opening-hand/closing-tool” action after the processing of large numbers. Moreover, no effect was detected for small numbers, confirming previous studies which used only finger movements. Altogether, our finding suggests that the well-known finger/number interaction can be reversed with tool use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Andres M, Olivier E, Badets A (2008a) Action, words and numbers: a motor contribution to semantic processing? Curr Dir Psychol Sci 17:313–317

    Article  Google Scholar 

  • Andres M, Ostry DJ, Nicol F, Paus T (2008b) Time course of number magnitude interference during grasping. Cortex 44:414–419

    Article  PubMed  Google Scholar 

  • Badets A, Osiurak F (2017) The ideomotor recycling theory for tool use, language and foresight. Exp Brain Res 235:365–377

    Article  PubMed  Google Scholar 

  • Badets A, Pesenti M (2010) Creating number semantics through finger movement perception. Cognition 115:46–53

    Article  PubMed  Google Scholar 

  • Badets A, Pesenti M (2011) Finger–number interaction: an ideomotor account. Exp Psychol 58:287–292

    Article  PubMed  Google Scholar 

  • Badets A, Andres M, Di Luca S, Pesenti M (2007) Number magnitude potentiates action judgment. Exp Brain Res 180:525–534

    Article  PubMed  Google Scholar 

  • Badets A, Bouquet CA, Ric F, Pesenti M (2012) Number generation bias after action observation. Exp Brain Res 221:43–49

    Article  PubMed  Google Scholar 

  • Badets A, Koch I, Toussaint L (2013) Role of an ideomotor mechanism in number processing. Exp Psychol 60:34–43

    Article  PubMed  Google Scholar 

  • Badets A, Koch I, Philipp AM (2016) A review of ideomotor approaches to perception, cognition, action, and language: advancing a cultural recycling hypothesis. Psychol Res 80:1–15

    Article  PubMed  Google Scholar 

  • Barsalou LW (2008) Grounded cognition. Annu Rev Psychol 59:617–645

    Article  PubMed  Google Scholar 

  • Borghi AM (2004) Object concepts and action: extracting affordances from objects parts. Acta Psychol 115:69–96

    Article  Google Scholar 

  • Buxbaum LJ (2001) Ideomotor apraxia: a call to action. Neurocase 7:445–448

    Article  CAS  PubMed  Google Scholar 

  • Chiou RYC, Chang EC, Tzeng OJL, Wu DH (2009) The common magnitude code underlying numerical and size processing for action but not for perception. Exp Brain Res 194:553–562

    Article  PubMed  Google Scholar 

  • Dehaene S (1997) The number sense: how the mind creates mathematics. Oxford University Press, Oxford

    Google Scholar 

  • Dehaene S, Bossini S, Giraux P (1993) The mental representation of parity and number magnitude. J Exp Psychol Gen 122:371–396

    Article  Google Scholar 

  • Fischer MH (2012) A hierarchical view of grounded, embodied and situated numerical cognition. Cogn Process 13:161–164

    Article  Google Scholar 

  • Fischer MH, Campens H (2008) Pointing to numbers and grasping magnitudes. Exp Brain Res 192:149–153

    Article  PubMed  Google Scholar 

  • Fischer MH, Sixtus E, Göbel SM (2015) A pointer about grasping numbers. Front Psychol. doi:10.1177/095679761

    Google Scholar 

  • Gianelli C, Ranzini M, Marzocchi M, Micheli LR, Borghi AM (2012) Influence of numerical magnitudes on the free choice of an object position. Cogn Process 13:185–188

    Article  Google Scholar 

  • Göbel SM, Rushworth MFS (2004) Cognitive neuroscience: acting on numbers. Curr Biol 14:517–519

    Article  Google Scholar 

  • Greenwald AG (1970) Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychol Rev 77:73–99

    Article  CAS  PubMed  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–878

    Article  CAS  PubMed  Google Scholar 

  • Hubbard EM, Piazza M, Pinel P, Dehaene S (2005) Interactions between number and space in parietal cortex. Nat Rev Neurosci 6:435–448

    Article  CAS  PubMed  Google Scholar 

  • Kunde W (2001) Response–effect compatibility in manual choice reaction tasks. J Exp Psychol Hum Percept Perform 27:387–394

    Article  CAS  PubMed  Google Scholar 

  • Lindemann O, Abolafia JM, Girardi G, Bekkering H (2007) Getting a grip on numbers: numerical magnitude priming in object grasping. J Exp Psychol Hum Percept Perform 33:1400–1409

    Article  PubMed  Google Scholar 

  • Loetscher T, Schwarz U, Schubiger M, Brugger P (2008) Head turns bias the brain’s internal random generator. Curr Biol 18:60–62

    Article  Google Scholar 

  • Noël MP (2005) Finger gnosia: a predictor of numerical abilities in children? Child Neuropsychol 11:413–430

    Article  PubMed  Google Scholar 

  • Osiurak F, Badets A (2014) Pliers, not fingers: tool-action effect in a motor intention paradigm. Cognition 130:66–73

    Article  PubMed  Google Scholar 

  • Osiurak F, Badets A (2016) Tool use and affordance: manipulation-based versus reasoning-based approaches. Psychol Rev 123:534–568

    Article  PubMed  Google Scholar 

  • Osiurak F, Jarry C, Le Gall D (2010) Grasping the affordances, understanding the reasoning: toward a dialectical theory of human tool use. Psychol Rev 117:517–540

    Article  PubMed  Google Scholar 

  • Ranzini M, Lugli L, Anelli M, Carbone R, Nicoletti R, Borghi AM (2011) Graspable objects shape number processing. Front Hum Neurosci 5:147. doi:10.3389/fnhum.2011.00147

    Article  PubMed  PubMed Central  Google Scholar 

  • Rugani R, Sartori L (2016) Numbers in action. Do numbers influence actions? Front Hum Neurosci 10:388. doi:10.3389/fnhum.2016.00388

    PubMed  PubMed Central  Google Scholar 

  • Schneider W, Eschmann A, Zuccolotto A (2002) E-prime reference guide. PsychologySoftware Tools, Pittsburgh

    Google Scholar 

  • Schwarz W, Keus IM (2004) Moving the eyes along the mental number line: comparing SNARC effects with saccadic and manual responses. Percept Psychophys 66:651–664

    Article  PubMed  Google Scholar 

  • Walsh V (2003) A theory of magnitude: common cortical metrics of time, space, and quantity. Trends Cogn Sci 7:483–488

    Article  PubMed  Google Scholar 

  • Wilson M (2002) Six views of embodied cognition. Psychon Bull Rev 9:625–636

    Article  PubMed  Google Scholar 

  • Zebian S (2005) Linkages between number concepts, spatial thinking, and directionality of writing: the SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates and illiterate Arabic speakers. J Cogn Cult 5:165–191

    Article  Google Scholar 

  • Zorzi M, Priftis K, Umiltà C (2002) Brain damage: neglect disrupts the mental number line. Nature 417:138–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from ANR (Agence Nationale pour la Recherche; Project “Démences et Utilisation d’Outils/Dementia and Tool Use,” ANR-2011-MALZ-006-03; F. Osiurak; Project “Cognition et économie liée à l’outil/Cognition and tool-use economy” ECOTOOL; ANR-14-CE30-0015-01; F. Osiurak) and was performed within the framework of the LABEX CORTEX (ANR-11-LABX-0042; F. Osiurak) of the Université de Lyon within the programme “Investissements d’Avenir” (ANR-11-IDEX-0007; F. Osiurak) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Badets.

Additional information

Handling editor: Shenbing Kuang (Chinese Academy of Sciences, Beijing); Reviewers: Luisa Sartori (University of Padua), Luisa Lugli (University of Bologna).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badets, A., Michelet, T., de Rugy, A. et al. Creating semantics in tool use. Cogn Process 18, 129–134 (2017). https://doi.org/10.1007/s10339-017-0795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-017-0795-8

Keywords

Navigation