Skip to main content
Log in

Fruit volatiles mediate differential attraction of Drosophila suzukii to wild and cultivated blueberries

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Native to the northeast USA, highbush blueberry is a crop domesticated for close to 100 years and that has been selected mainly for high yields and bigger fruit. We hypothesized that, due to domestication and associated agronomic selection (i.e., cultivation practices), cultivated blueberries differ from their wild ancestors in fruit volatile emissions, affecting the response of a frugivorous pest. To test this hypothesis, we compared the attraction of adult spotted-wing drosophila (Drosophila suzukii) to wild and cultivated blueberry fruit volatiles in choice assays. We also conducted headspace volatile chemical analysis and electroantennographic detection (EAD) analysis to identify and quantify any antennally active compounds. For this, fruit from wild and cultivated blueberries, growing in proximity, was sampled from six farms located in the Pinelands National Reserve (New Jersey, USA)—a blueberry-producing region with a forest understory consisting largely of wild blueberries. On a per gram basis, we found that wild blueberries are more attractive to D. suzukii flies and have higher volatile emission rates than cultivated blueberries. Nine EAD-active compounds from wild blueberries (isobutyl acetate, ethyl butyrate, ethyl 2-methylbutyrate, ethyl 3-methylbutyrate, hexanal, isoamyl acetate, 3-hydroxybutanone (acetoin), 6-methyl-5-hepten-2-one, and 1-hexanol) were attractive individually and as a blend to D. suzukii flies. However, a 4-component blend composed of isoamyl acetate, acetoin, 6-methyl-5-hepten-2-one, and 1-hexanol was more attractive to D. suzukii than the 9-component blend. Altogether, our results show that the domestication/cultivation of blueberries is associated with lower rates of fruit volatile emissions, which has resulted in decreased attraction of a frugivorous pest, D. suzukii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Feng et al. 2018). b Percent (mean ± 1 SE) response of adult Drosophila suzukii (mixed sexes) to wild and cultivated highbush blueberry (Vaccinium corymbosum) fruit volatiles in choice tests after 24 h. Each bar is the mean of 44 replicates, and 20 D. suzukii flies were released per replicate (N = 880 flies)

Fig. 2
Fig. 3
Fig. 4

(adapted from Feng et al. 2018). (b) Percent (mean ± 1 SE) response of adult Drosophila suzukii (mated females) to each of the nine EAD-active compounds from wild blueberry fruit against distilled water (control) after 24 h. Each bar is the mean of 10 replicates, and 10 female flies were released per replicate (N = 100 flies)

Fig. 5

Similar content being viewed by others

References

  • Abraham J, Zhang A, Angeli S et al (2015) Behavioral and antennal responses of Drosophila suzukii (Diptera: Drosophilidae) to volatiles from fruit extracts. Environ Entomol 44:356–367

    Article  CAS  PubMed  Google Scholar 

  • Agarbati A, Canonico L, Ciani M, Comitini F (2019) The impact of fungicide treatments on yeast biota of Verdicchio and Montepulciano grape varieties. PLoS ONE 14:e0217385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkema JT, Dicke M, Wertheim B (2019) Context-dependence and the development of push-pull approaches for integrated management of Drosophila suzukii. Insects 10:454. https://doi.org/10.3390/insects10120454

    Article  PubMed Central  Google Scholar 

  • Altieri MA, Nicholls CI (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72:203–211

    Article  Google Scholar 

  • Asplen MK, Anfora G, Biondi A et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J Pest Sci 88:469–494

    Article  Google Scholar 

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Baloga DW, Vorsa N, Lawter L (1995) Dynamic headspace gas chromatography—mass spectrometry analysis of volatile flavor compounds from wild diploid blueberry species. In: Rouseff RL, Leahy MM (ed) Fruit Flavors. ACS Symposium Series vol. 596, pp 235–247

  • Bellutti N, Gallmetzer A, Innerebner G et al (2018) Dietary yeast affects preference and performance in Drosophila suzukii. J Pest Sci 91:651–660

    Article  Google Scholar 

  • Benrey B, Callejas A, Rios L et al (1998) The effects of domestication of Brassica and Phaseolus on the interaction between phytophagous insects and parasitoids. Biol Control 11:130–140

    Article  Google Scholar 

  • Biondi A, Wang X, Miller JC et al (2017) Innate olfactory responses of Asobara japonica toward fruits infested by the invasive spotted wing drosophila. J Insect Behav 30:495–506

    Article  Google Scholar 

  • Briem F, Eben A, Gross J et al (2016) An invader supported by a parasite: Mistletoe berries as a host for food and reproduction of spotted wing Drosophila in early spring. J Pest Sci 89:749–759

    Article  Google Scholar 

  • Burrack HJ, Fernandez GE, Spivey T, Kraus DA (2013) Variation in selection and utilization of host crops in the field and laboratory by Drosophila suzukii Matsumara (Diptera: Drosophilidae), an invasive frugivore. Pest Manag Sci 69:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Calabria G, Máca J, Bächli G, Serra L, Pascual M (2012) First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J Appl Entomol 136:139–147

    Article  Google Scholar 

  • Cha DH, Adams T, Rogg H, Landolt PJ (2012) Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing drosophila, Drosophila suzukii. J Chem Ecol 38:1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Cha DH, Hesler SP, Cowles RS et al (2013) Comparison of a synthetic chemical lure and standard fermented baits for trapping Drosophila suzukii (Diptera: Drosophilidae). Environ Entomol 42:1052–1060

    Article  PubMed  Google Scholar 

  • Chen YH, Welter SC (2005) Crop domestication disrupts a native tritrophic interaction associated with the sunflower, Helianthus annuus (Asterales: Asteraceae). Ecol Entomol 30:673–683

    Article  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015a) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Gols R, Stratton CA et al (2015b) Complex tritrophic interactions in response to crop domestication: predictions from the wild. Entomol Exp Appl 157:40–59

    Article  Google Scholar 

  • Chen YH, Ruiz-Arocho J, von Wettberg EJ (2018) Crop domestication: anthropogenic effects on insect–plant interactions in agroecosystems. Curr Opin Insect Sci 29:56–63

    Article  PubMed  Google Scholar 

  • ChunYu Z, YaDong L, XueSen C et al (2009) GC/MS analysis of volatile components in highbush blueberry cultivars. Acta Hortic Sin 36:187–194

    Google Scholar 

  • Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160

    Google Scholar 

  • Cipollini ML (2000) Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions. Rev Chil Hist Nat 73:421–440

    Article  Google Scholar 

  • Cipollini ML, Stiles EW (1993) Fruit rot, antifungal defense, and palatability of fleshy fruits for frugivorous birds. Ecology 74:751–762

    Article  Google Scholar 

  • Cloonan KR, Abraham J, Angeli S et al (2018) Advances in the chemical ecology of the spotted wing drosophila (Drosophila suzukii) and its applications. J Chem Ecol 44:922–939

    Article  CAS  PubMed  Google Scholar 

  • Cloonan KR, Hernández-Cumplido J, De Sousa ALV et al (2019) Laboratory and field evaluation of host-related foraging odor-cue combinations to attract Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol 112:2850–2860

    Article  CAS  PubMed  Google Scholar 

  • Dalton DT, Walton VM, Shearer PW et al (2011) Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag Sci 67:1368–1374

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication. London: John Murray. First edition, first issue. Volume 1

  • de Lange ES, Farnier K, Gaudillat B, Turlings TCJ (2016) Comparing the attraction of two parasitoids to herbivore-induced volatiles of maize and its wild ancestors, the teosintes. Chemoecology 26:33–44

    Article  CAS  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  • Du X (2014) Aroma active volatiles in four southern highbush blueberry. J Agric Food Chem 62:4537–4543

    Article  CAS  PubMed  Google Scholar 

  • Du X, Qian M (2010) Flavor chemistry of small fruits: blackberry, raspberry, and blueberry. In: Qian M, Rimando A (ed) Flavor and health benefits of small fruits. American Chemical Society, pp 3–27

  • Du X, Plotto A, Song M et al (2011) Volatile composition of four southern highbush blueberry cultivars and effect of growing location and harvest date. J Agric Food Chem 59:8347–8357

    Article  CAS  PubMed  Google Scholar 

  • Eck P, Childers N (1966) Bluebberry culture. Rutgers University Press, New Brunswick, New Jersey, USA

    Google Scholar 

  • Ehlenfeldt MK (2009) Domestication of the highbush blueberry at Whitesbog, New Jersey, 1911–1916. Acta Hortic 810:147–152

    Article  Google Scholar 

  • Farneti B, Khomenko I, Grisenti M et al (2017) Exploring blueberry aroma complexity by chromatographic and direct-injection spectrometric techniques. Front Plant Sci 8:1–19

    Article  Google Scholar 

  • Faucher CP, Hilker M, de Bruyne M (2013) Interactions of carbon dioxide and food odours in drosophila: Olfactory hedonics and sensory neuron properties. PLoS ONE 8:e5636

    Article  CAS  Google Scholar 

  • Feeny PP (1973) Biochemical coevolution between plants and their insect herbivores. In: Raven EL, Gilbert PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, Texas, USA, pp 3–19

    Google Scholar 

  • Feng Y, Bruton R, Park A, Zhang A (2018) Identification of attractive blend for spotted wing drosophila, Drosophila suzukii, from apple juice. J Pest Sci 91:1251–1267

    Article  Google Scholar 

  • Fuller DQ, Allaby RG, Stevens C (2010) Domestication as innovation: the entanglement of techniques, technology and chance in the domestication of cereal crops. World Archaeol 42:13–28

    Article  Google Scholar 

  • Fuller DQ, Denham T, Arroyo-Kalin M et al (2014) Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc Natl Acad Sci 111:6147–6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo RK, Zhang Q, Dossett M et al (2018) Breeding trait priorities of the blueberry industry in the United States and Canada. HortScience 53:1021–1028

    Article  Google Scholar 

  • Goff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815–819

    Article  CAS  PubMed  Google Scholar 

  • Hamby KA, Hernández A, Boundy-Mills K, Zalom FG (2012) Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl Environ Microbiol 78:4869–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock JF (2005) Contributions of domesticated plant studies to our understanding of plant evolution. Ann Bot 96:953–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67:1352–1357

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Cumplido J, Giusti MM, Zhou Y et al (2018) Testing the ‘plant domestication-reduced defense’ hypothesis in blueberries: the role of herbivore identity. Arthropod Plant Interact 12:483–493

    Article  Google Scholar 

  • Hirvi T, Honkanen E (1983) The aroma of blueberries. J Sci Food Agric 34:992–996

    Article  CAS  Google Scholar 

  • Horvat RJ, Senter SD, Dekazos ED (1983) GLC-MS analysis of volatile constituents in rabbiteye blueberries. J Food Sci 48:278–279

    Article  CAS  Google Scholar 

  • Huang CH, Yan FM, Byers JA et al (2009) Volatiles induced by the larvae of the Asian corn borer (Ostrinia furnacalis) in maize plants affect behavior of conspecific larvae and female adults. Insect Sci 16:311–320

    Article  CAS  Google Scholar 

  • Jaramillo SL, Mehlferber E, Moore PJ (2015) Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol Entomol 40:2–9

    Article  Google Scholar 

  • Johnson RA, Willson MF, Thompson JN, Bertin RI (1985) Nutritional values of wild fruits and consumption by migrant frugivorous birds. Ecology 66:819–827

    Article  Google Scholar 

  • Keesey IW, Knaden M, Hansson BS (2015) Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J Chem Ecol 41:121–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köllner TG, Held M, Lenk C et al (2008) A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lebreton S, Becher PG, Hansson BS, Witzgall P (2012) Attraction of Drosophila melanogaster males to food-related and fly odours. J Insect Physiol 58:125–129

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Bruck DJ, Curry H et al (2011) The susceptibility of small fruits and cherries to the spotted-wing drosophila, Drosophila suzukii. Pest Manag Sci 67:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • Li T, Yang X, Yu Y et al (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36:1160–1163

    Article  CAS  Google Scholar 

  • Linz J, Baschwitz A, Strutz A et al (2013) Host plant-driven sensory specialization in Drosophila erecta. Proc R Soc B Biol Sci 280:20130626

    Article  CAS  Google Scholar 

  • Liu Y, Dong W, Zhang F et al (2018) Identification of active components from volatiles of Chinese bayberry, Myrica rubra attractive to Drosophila suzukii. Arthropod Plant Interact 12:435–442

    Article  Google Scholar 

  • Liu F, Li S, Gao J et al (2019a) Changes of terpenoids and other volatiles during alcoholic fermentation of blueberry wines made from two southern highbush cultivars. LWT - Food Sci Technol 109:233–240

    Article  CAS  Google Scholar 

  • Liu S, Laaksonen O, Yang B (2019b) Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations. Food Microbiol 80:25–39

    Article  CAS  PubMed  Google Scholar 

  • Lugemwa FN, Lwande W, Bentley MD et al (1989) Volatiles of wild blueberry, Vaccinium angustifolium: Possible attractants for the blueberry maggot fruit fly, Rhagoletis mendax. J Agric Food Chem 37:232–233

    Article  CAS  Google Scholar 

  • McCormick J (1979) The vegetation of the New Jersey Pine Barrens. In: Forman R (ed) Pine barrens: ecosystem and landscape. Academic Press Inc, New York, USA, pp 229–243

    Google Scholar 

  • Meyer RS, Duval AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    Article  PubMed  Google Scholar 

  • Minitab (2013) Minitab computer software. Minitab Inc., State College, Pennsylvania, USA

  • Moore JN (1965) Improving highbush blueberries by breeding and selection. Euphytica 14:39–48

    Article  Google Scholar 

  • Paudel S, Lin P-A, Foolad MR et al (2019) Induced plant defenses against herbivory in cultivated and wild tomato. J Chem Ecol 45:693–707

    Article  CAS  PubMed  Google Scholar 

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  CAS  PubMed  Google Scholar 

  • Revadi S, Vitagliano S, Rossi Stacconi MV et al (2015) Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiol Entomol 40:54–64

    Article  CAS  Google Scholar 

  • Rodríguez A, Alquézar B, Peña L (2013) Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol 197:36–48

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saona C, Cloonan KR, Sanchez-Pedraza F et al (2018) Differential susceptibility of wild and cultivated blueberries to an invasive frugivorous pest. J Chem Ecol 45:286–297

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saona C, Vorsa N, Singh AP, Johnson-Cicalese J, Szendrei Z, Mescher MC, Frost CJ (2011) Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. J of Exp Bot 62(8):2633–2644

    Article  CAS  Google Scholar 

  • Rowen E, Kaplan I (2016) Eco-evolutionary factors drive induced plant volatiles: a meta-analysis. New Phytol 210:284–294

    Article  CAS  PubMed  Google Scholar 

  • Scheidler NH, Liu C, Hamby KA et al (2015) Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 5:1–13

    Article  CAS  Google Scholar 

  • Spitaler U, Bianchi F, Eisenstecken D et al (2020) Yeast species affects feeding and fitness of Drosophila suzukii adults. J Pest Sci 93:1295–1309

    Article  Google Scholar 

  • SPSS (2015) IBM SPSS statistics for windows. IBM Corp., Armonk, New York, USA

  • Stensmyr MC, Giordano E, Balloi A et al (2003) Novel natural ligands for Drosophila olfactory receptor neurones. J Exp Biol 206:715–724

    Article  CAS  PubMed  Google Scholar 

  • Stensmyr MC, Dweck HKM, Farhan A et al (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Tamiru A, Bruce TJA, Woodcock CM et al (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:1075–1083

    Article  PubMed  Google Scholar 

  • Ulrich D, Komes D, Olbricht K, Hoberg E (2007) Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genet Resour Crop Evol 54:1185–1196

    Article  CAS  Google Scholar 

  • Urbaneja-Bernat P, Polk D, Sanchez-Pedraza F, et al (2020) Non-crop habitats serve as a potential source of spotted-wing drosophila (Diptera: Drosophilidae) to adjacent cultivated highbush blueberries (Ericaceae). Can Entomol 1–16

  • Wang X-G, Nadel H, Johnson MW et al (2009) Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic Appl Ecol 10:216–227

    Article  Google Scholar 

  • Whitehead SR, Turcotte MM, Poveda K (2017) Domestication impacts on plant-herbivore interactions: a meta-analysis. Philos Trans R Soc B Biol Sci 372:20160034

    Article  Google Scholar 

  • Zhang A, Linn C, Wright S et al (1999) Identification of a new blend of apple volatiles attractive to the apple maggot, Rhagoletis pomonella. J Chem Ecol 25:1221–1232

    Article  CAS  Google Scholar 

  • Zhang A, Amalin D, Shirali S et al (2004) Sex pheromone of the pink hibiscus mealybug, Maconellicoccus hirsutus, contains an unusual cyclobutanoid monoterpene. Proc Natl Acad Sci USA 101:9601–9606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Julien-David D, Miesch M et al (2005) Identification and quantitative analysis of β-sitosterol oxides in vegetable oils by capillary gas chromatography–mass spectrometry. Steroids 70:896–906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Frake, Nicolas Firbas, Kyra Huttinger, and Fernando Sanchez-Pedraza for laboratory and field assistance. Special thanks to Robert Holdcraft for assistance in volatile collection and analysis, Vera Kyryczenko-Roth for colony maintenance, and three anonymous reviewers for helpful comments on an earlier draft of this manuscript.

Funding

The study was partially supported by funding from the USDA NIFA Crop Protection and Pest Management (CPPM) program (award no. 2015-70006-24152), the USDA NIFA Specialty Crops Research Initiative (SCRI) program (award no. 2015-51181-24252), the New Jersey Blueberry Research Council, and the Hatch projects no. NJ08252 and NJ08140 to CR-S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Urbaneja-Bernat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Antonio Biondi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbaneja-Bernat, P., Cloonan, K., Zhang, A. et al. Fruit volatiles mediate differential attraction of Drosophila suzukii to wild and cultivated blueberries. J Pest Sci 94, 1249–1263 (2021). https://doi.org/10.1007/s10340-021-01332-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-021-01332-z

Keywords

Navigation