Skip to main content

Advertisement

Log in

Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513, Peru

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The interest in numerical simulation of cascading processes involving mass movements and lakes has recently risen strongly, especially as the formation of new lakes in high-mountain areas as a consequence of glacier recession can be observed all over the world. These lakes are often located close to potentially unstable slopes and therewith prone to impacts from mass movements, which may cause the lake to burst out and endanger settlements further downvalley. The need for hazard assessment of such cascading processes is continuously rising, which demands methodological development of coupled numerical simulations. Our study takes up on the need for systematic analysis of the effect of assumptions taken in the simulation of the process chain and the propagation of the corresponding uncertainties on the simulation results. We complemented the research of Adv Geosci 35:145-155, 2014 carried out at Lake 513 in the Cordillera Blanca, Peru, by focusing on the aspects of (a) ice-avalanche scenario development and of (b) analysis of uncertainty propagation in the coupled numerical simulation of the process chain of an impact wave triggered by a rock/ice avalanche. The analysis of variance of the dimension of the overtopping wave was based on 54 coupled simulation runs, applying RAMMS and IBER for simulation of the ice avalanche and the impact wave, respectively. The results indicate (a) location and magnitude of potential ice-avalanche events, and further showed (b) that the momentum transfer between an avalanche and the impact wave seems to be reliably representable in coupled numerical simulations. The assessed parameters—initial avalanche volume, friction calibration, mass entrainment and transformation of the data between the models—was decisive of whether the wave overtopped or not. The overtopping time and height directly characterize the overtopping wave, while the overtopping volume and the discharge describe the overtopping hydrograph as a consequence of the run-up rather than the wave. The largest uncertainties inherent in the simulation of the impact wave emerge from avalanche-scenario definition rather than from coupling of the models. These findings are of relevance also to subsequent outburst flow simulation and contribute to advance numerical simulation of the entire process chain, which might also be applied to mass movements other than rock/ice avalanches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alean J (1985) Ice avalanches—some empirical information about their formation and reach. J Glaciol 31:324–333

    Google Scholar 

  • Ataie-Ashtiani B, Najafi Jilani A (2006) Prediction of submerged landslide generated waves in dam reservoirs: an applied approach. Dam Eng 17:135–155

    Google Scholar 

  • Ataie-Ashtiani B, Yavari-Ramshe S (2011) Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides 8:417–432. doi:10.1007/s10346-011-0258-8

    Article  Google Scholar 

  • Bartelt P, Buser O, Platzer K (2007) Starving avalanches: frictional mechanisms at the tails of finite-sized mass movements. Geophys Res Lett 34:L20407. doi:10.1029/2007gl031352

    Article  Google Scholar 

  • Byers A, McKinney D, Somos-Valenzuela M, Watanabe T, Lamsal D (2013) Glacial lakes of the Hinku and Hongu valleys, Makalu Barun National Park and Buffer Zone, Nepal. Nat Hazards 69:115–139. doi:10.1007/s11069-013-0689-8

    Article  Google Scholar 

  • Carey M (2005) Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Glob Planet Change 47:122–134. doi:10.1016/j.gloplacha.2004.10.007

    Article  Google Scholar 

  • Carey M, Huggel C, Bury J, Portocarrero C, Haeberli W (2012) An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru. Clim Change 112:733–767. doi:10.1007/s10584-011-0249-8

    Article  Google Scholar 

  • Carrivick JL (2010) Dam break—outburst flood propagation and transient hydraulics: a geosciences perspective. J Hydrol 380:338–355. doi:10.1016/j.jhydrol.2009.11.009

    Article  Google Scholar 

  • Chisolm R, Somos-Valenzuela M, McKinney D, Hodges B (2013) Using a hydrodynamic lake model to predict the impact of avalanche events at Lake Palcacocha, Peru. In: AGU Fall Meeting Abstracts, Poster

    Google Scholar 

  • Christen M, Bartelt P, Kowalski J, Stoffel L (2008) Calculation of dense snow avalanches in three-dimensional terrain with the numerical simulation program RAMMS. In: Proceedings Whistler 2008 International Snow Science Workshop September 21–27, 2008., p 709

    Google Scholar 

  • Christen M, Bartelt P, Kowalski J (2010a) Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results. Ann Glaciol 51:161–168. doi:10.3189/172756410791386553

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010b) RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14. doi:10.1016/j.coldregions.2010.04.005

    Article  Google Scholar 

  • Cochachin A (2011) Batimetría de la Laguna 513, estudio y monitoreo de las lagunas altoandinas. Unidad de Glaciología y Recursos Hídricos. Autoridad Nacional del Perú, Huaraz

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Engl Geol 64:65–87. doi:10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  • Di Risio M, De Girolamo P, Beltrami GM (2011) Forecasting landslide generated tsunamis: a review. In: Mörner N-A (ed) The tsunami threat - research and technology., p 26. doi:10.5772/13767

    Google Scholar 

  • Domnik B, Pudasaini SP, Katzenbach R, Miller SA (2013) Coupling of full two-dimensional and depth-averaged models for granular flows. J Non-Newton Fluid Mech 201:56–68. doi:10.1016/j.jnnfm.2013.07.005

    Article  Google Scholar 

  • Evans SG, Delaney KB (2015) Catastrophic mass flows in the mountain glacial environment. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks and disasters. Elsevier, Amsterdam, pp 564–606

    Google Scholar 

  • Faillettaz J, Funk M (2013) Glacier instabilities and prediction. Mem Soc Vaudoise Sci Nat 25:159–174

    Google Scholar 

  • Haeberli W, Linsbauer A (2013) Brief communication ‘Global glacier volumes and sea level - small but systematic effects of ice below the surface of the ocean and of new local lakes on land’. Cryosphere 7:817–821. doi:10.5194/tc-7-817-2013

    Article  Google Scholar 

  • Haeberli W, Clague JJ, Huggel C, Kääb A (2010) Hazards from lakes in high-mountain glacier and permafrost regions: climate change effects and process interactions. In: Advances de Geomorfología en España 2008–2010. XI Reunión Nacional de Geomorfología, Solsona, pp 439–446

    Google Scholar 

  • Harris C et al (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci Rev 92:117–171. doi:10.1016/j.earscirev.2008.12.002

    Article  Google Scholar 

  • Heller V, Hager WH (2011) Wave types of landslide generated impulse waves. Ocean Eng 38:630–640. doi:10.1016/j.oceaneng.2010.12.010

    Article  Google Scholar 

  • Heller V, Hager WH, Minor HE (2008) Rutscherzeugte Impulswellen in Stauseen: Grundlagen und Berechnung. Mitteilungen 206 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich

    Google Scholar 

  • Hubbard B et al (2005) Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surf Process Landf 30:1251–1264

    Article  Google Scholar 

  • Huggel C et al (2010) Recent and future warm extreme events and high-mountain slope stability. Philos Trans R Soc Math Phys Eng Sci 368:2435–2459. doi:10.1098/rsta.2010.0078

    Article  Google Scholar 

  • Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process Landf 37:77–91. doi:10.1002/esp.2223

    Article  Google Scholar 

  • Huggel C, Korup O, Gruber S (2013) Landslide hazards and climate change in high mountains. Treatise Geomorph 13:288–301

    Article  Google Scholar 

  • Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanism, travel distance and velocity. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis Group, London, pp 99–128

    Google Scholar 

  • Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engl Geol 102:152–163. doi:10.1016/j.enggeo.2008.03.012

    Article  Google Scholar 

  • Hutter K, Wang Y, Pudasaini SP (2005) The Savage–Hutter avalanche model: how far can it be pushed? Philos Trans R Soc Math Phys Eng Sci 363:1507–1528. doi:10.1098/rsta.2005.1594

    Article  Google Scholar 

  • IBER (2010a) IBER - Two-dimensional modelling of free surface shallow water flow. Hydraulic reference manual v1.0

    Google Scholar 

  • IBER (2010b) IBER - Two-dimensional modelling of free surface shallow water flow. Quick start guide v1.0

    Google Scholar 

  • IPCC (2013) Climate Change 2013. The Physical Science Basis. Summary for Policiymakers, Technical Summary and Frequently Asked Questions. Part of the Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change

  • Iribarren Anacona P, Mackintosh A, Norton KP (2014) Hazardous processes and events from glacier and permafrost areas: lessons from the Chilean and Argentinean Andes. Earth Surf Process Landf 20:doi:10.1002/esp.3524

  • Kabacoff R (2011) R in Action. Data analysis and graphics with R. Manning Publications Co., Shelter Island

    Google Scholar 

  • Klimeš J, Benešová M, Vilímek V, Bouška P, Cochachin Rapre A (2014) The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru. Nat Hazards 71:1617–1638. doi:10.1007/s11069-013-0968-4

    Article  Google Scholar 

  • Kowalski J (2008) Two-phase modeling of debris flows, Doctoral thesis, ETH Zürich

    Google Scholar 

  • Lliboutry L, Arnao BM, Pautre A (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. I-III. J Glaciol 18:239–290

    Google Scholar 

  • Loriaux TH, Casassa G (2013) Evolution of glacial lakes from the Northern Patagonian Icefield and terrestrial water storage in a sea-level rise context. Glob Planet Change 102:33–40. doi:10.1016/j.gloplacha.2012.12.012

    Article  Google Scholar 

  • Malet JP, Delacourt C, Maquaire O, Amitrano D (2007) Introduction to the thematic volume: issues in landslide process monitoring and understanding. Bull Geol Soc France 178:63–64

    Article  Google Scholar 

  • Manville VR, Major JJ, Fagents SA (2013) Modeling lahar behaviour and hazards. In: S. A. F, Gregg TKP, Lopes RMC (eds) Modelling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp 300–330

    Chapter  Google Scholar 

  • Margreth S, Funk M (1999) Hazard mapping for ice and combined snow/ice avalanches—two case studies from the Swiss and Italian Alps. Cold Reg Sci Technol 30:159–173. doi:10.1016/S0165-232X(99)00027-0

    Article  Google Scholar 

  • Margreth S, Faillettaz J, Funk M, Vagliasindi M, Diotri F, Broccolato M (2011) Safety concept for hazards caused by ice avalanches from the Whymper hanging glacier in the Mont Blanc Massif. Cold Reg Sci Technol 69:194–201. doi:10.1016/j.coldregions.2011.03.006

    Article  Google Scholar 

  • Mickey RM, Dunn OJ, Clark VA (2004) Applied statistics: analysis of variance and regression, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Mool P (1995) Glacier lake outburst floods in Nepal. J Nepal Geol Soc 11:273–280

    Google Scholar 

  • Morris J (2000) Rethinking risk and the precautionary principle. European Molecular Biology Organization, Oxfrod

    Google Scholar 

  • Naef D, Rickenmann D, Rutschmann P, McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat Hazards Earth Syst Sci 6:155–165. doi:10.5194/nhess-6-155-2006

    Article  Google Scholar 

  • Noetzli J, Gruber S (2009) Transient thermal effects in Alpine permafrost. Cryosphere 3:85–99. doi:10.5194/tc-3-85-2009

    Article  Google Scholar 

  • Panizzo A, De Girolamo P, Petaccia A (2005) Forecasting impulse waves generated by subaerial landslides. J Geophys Res Ocean 110:23. doi:10.1029/2004jc002778

    Article  Google Scholar 

  • Pastor M et al (2009) Modelling of fast catastrophic landslides and impulse waves induced by them in fjords, lakes and reservoirs. Engl Geol 109:124–134. doi:10.1016/j.enggeo.2008.10.006

    Article  Google Scholar 

  • Pralong A, Birrer C, Stahel WA, Funk M (2005) On the predictability of ice avalanches. Nonlinear Process Geophys 12:849–861. doi:10.5194/npg-12-849-2005

    Article  Google Scholar 

  • Preuth T, Bartelt P, Korup O, McArdell BW (2010) A random kinetic energy model for rock avalanches: eight case studies. J Geophys Res Earth Surf 115:F03036. doi:10.1029/2009jf001640

    Article  Google Scholar 

  • Pudasaini SP, Kattel P, Kafle J, Pokhrel PR, Khattri KB (2014) Two-phase and three-dimensional simulations of complex fluid-sediment transport down a slope and impacting water bodies. In: Geophysical Research Abstracts. Europen Geoscience Union, Vienna

    Google Scholar 

  • Salm B (1993) Flow, flow transition and runout distances of flowing avalanches. Ann Glaciol 18:221–221

    Google Scholar 

  • Salzmann N, Kääb A, Huggel C, Allgöwer B, Haeberli W (2004) Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modelling. Nor J Geogr 58:74–84. doi:10.1080/00291950410006805

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215. doi:10.1017/S0022112089000340

    Article  Google Scholar 

  • Schaub Y, Haeberli W, Huggel C, Künzler M, Bründl M (2013) Landslides and new Lakes in deglaciating areas: a risk management framework. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin Heidelberg, pp 31–38. doi:10.1007/978-3-642-31313-4_5

    Chapter  Google Scholar 

  • Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J Geophys Res Earth Surf 115:F04026. doi:10.1029/2010jf001734

    Google Scholar 

  • Schneider D, Huggel C, Haeberli W, Kaitna R (2011) Unraveling driving factors for large rock–ice avalanche mobility. Earth Surf Process Landf 36:1948–1966. doi:10.1002/esp.2218

    Article  Google Scholar 

  • Schneider D, Huggel C, Cochachin A, Guillén S, García J (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155. doi:10.5194/adgeo-35-145-2014

    Article  Google Scholar 

  • Singh VP (1996) Dam breach modelling technology vol 17. Water Science and Technology Library. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Somos-Valenzuela M, Chisolm R, McKinney D, Rivas D (2013) Hazard map in Huaraz-Peru due to a glacial lake outburst flood from Palcacocha Lake. In: AGU Fall Meeting Abstracts, Poster

    Google Scholar 

  • Sosio R, Crosta GB, Chen JH, Hungr O (2012) Modelling rock avalanche propagation onto glaciers. Quat Sci Rev 47(0):23–40

  • Sovilla B, Burlando P, Bartelt P (2006) Field experiments and numerical modeling of mass entrainment in snow avalanches. J Geophys Res Earth Surf 111:F03007. doi:10.1029/2005jf000391

    Article  Google Scholar 

  • Sovilla B, Margreth S, Bartelt P (2007) On snow entrainment in avalanche dynamics calculations. Cold Reg Sci Technol 47:69–79. doi:10.1016/j.coldregions.2006.08.012

    Article  Google Scholar 

  • Stoffel M, Huggel C (2012) Effects of climate change on mass movements in mountain environments. Prog Phys Geogr 36:421–439. doi:10.1177/0309133312441010

    Article  Google Scholar 

  • Stricker B (2010) Murgänge im Torrente Riascio (TI): Ereignisanalyse, Auslösefaktoren und Simulation von Ereignissen mit RAMMS. Master’s thesis. University of Zürich, Zürich

  • Vilímek V, Zapata Luyo M, Klimeš J, Patzelt Z, Santillán N (2005) Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2:107–115. doi:10.1007/s10346-005-0052-6

    Article  Google Scholar 

  • Vilímek V, Klimeš J, Emmer A, Benešová M (2015) Geomorphologic impacts of the glacial lake outburst flood from Lake No. 513 (Peru). Environ Earth Sci 73:5233–5244. doi:10.1007/s12665-014-3768-6

    Article  Google Scholar 

  • Westoby MJ, Glasser NF, Brasington J, Hambrey MJ, Quincey DJ, Reynolds JM (2014) Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci Rev 134:137–159. doi:10.1016/j.earscirev.2014.03.009

    Article  Google Scholar 

  • Worni R, Stoffel M, Huggel C, Volz C, Casteller A, Luckmann B (2012) Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina). J Hydrol 444–445:134–145. doi:10.1016/j.jhydrol.2012.04.013

    Article  Google Scholar 

  • Worni R, Huggel C, Stoffel M (2013) Glacial lakes in the Indian Himalayas — From an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. Sci Total Environ 468–469:S71–S84. doi:10.1016/j.scitotenv.2012.11.043

    Article  Google Scholar 

  • Worni R, Huggel C, Clague JJ, Schaub Y, Stoffel M (2014) Coupling glacial lake impact, dam breach, and flood processes: a modeling perspective. Geomorphology 224:161–176. doi:10.1016/j.geomorph.2014.06.031

    Article  Google Scholar 

  • Zapata Luyo M (2002) La dinámica glaciar en lagunas de la Cordillera Blanca. Acta Montana 19:37–60

    Google Scholar 

  • Zemp M, Roer I, Kääb A, Hoelzle M, Paul F, Haeberli W (2008) Global glacier changes: facts and figures. United Nations Environment Programme (UNEP) and World Glacier Monitoring Service (WGMS)

    Google Scholar 

Download references

Acknowledgements

This study was carried out in the NELAK-project, funded by the Swiss National Science Foundation (SNF) and UNISCIENTIA STIFTUNG within the framework of the National Research Programme (NRP) 61 on sustainable water management and in close collaboration with the Proyecto Glaciares funded by the Swiss Agency for Development and Cooperation (SDC). Special thanks go to CARE Peru and the entire Unidad de Glaciología y Recursos Hídricos (UGRH, Huaraz) of the Autoridad Nacional de Agua (ANA) of Peru for their indispensable logistic support on site, to the WSL Institute of Snow and Avalanche Research SLF in Davos, to Demian Schneider and Sebastian Guillén Ludeña for assistance regarding simulation issues as well as to Nans Addor and Mattia Molinaro for the support in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Schaub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaub, Y., Huggel, C. & Cochachin, A. Ice-avalanche scenario elaboration and uncertainty propagation in numerical simulation of rock-/ice-avalanche-induced impact waves at Mount Hualcán and Lake 513, Peru. Landslides 13, 1445–1459 (2016). https://doi.org/10.1007/s10346-015-0658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0658-2

Keywords

Navigation