Skip to main content

Advertisement

Log in

A robust debris-flow and GLOF risk management strategy for a data-scarce catchment in Santa Teresa, Peru

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The town of Santa Teresa (Cusco Region, Peru) has been affected by several large debris-flow events in the recent past, which destroyed parts of the town and resulted in a resettlement of the municipality. Here, we present a risk analysis and a risk management strategy for debris-flows and glacier lake outbursts in the Sacsara catchment. Data scarcity and limited understanding of both physical and social processes impede a full quantitative risk assessment. Therefore, a bottom-up approach is chosen in order to establish an integrated risk management strategy that is robust against uncertainties in the risk analysis. With the Rapid Mass Movement Simulation (RAMMS) model, a reconstruction of a major event from 1998 in the Sacsara catchment is calculated, including a sensitivity analysis for various model parameters. Based on the simulation results, potential future debris-flows scenarios of different magnitudes, including outbursts of two glacier lakes, are modeled for assessing the hazard. For the local communities in the catchment, the hazard assessment is complemented by the analysis of high-resolution satellite imagery and fieldwork. Physical, social, economic, and institutional vulnerability are considered for the vulnerability assessment, and risk is eventually evaluated by crossing the local hazard maps with the vulnerability. Based on this risk analysis, a risk management strategy is developed, consisting of three complementing elements: (i) standardized risk sheets for the communities; (ii) activities with the local population and authorities to increase social and institutional preparedness; and (iii) a simple Early Warning System. By combining scientific, technical, and social aspects, this work is an example of a framework for an integrated risk management strategy in a data scarce, remote mountain catchment in a developing country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson MG, Holcombe E, Holm-Nielsen N, Monica Della R (2014) What are the emerging challenges for community-based landslide risk reduction in developing countries? Nat Hazards Rev 15:128–139. doi:10.1061/(ASCE)NH.1527-6996.0000125

    Article  Google Scholar 

  • Arattano M, Marchi L (2008) Systems and sensors for debris-flow monitoring and warning. Sensors 8:2436–2452

    Article  Google Scholar 

  • Armento MC, Genevois R, Tecca PR (2008) Comparison of numerical models of two debris flows in the Cortina d’ Ampezzo area, Dolomites, Italy. Landslides 5:143–150. doi:10.1007/s10346-007-0111-2

    Article  Google Scholar 

  • Berger C, McArdell BW, Schlunegger F (2011) Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. J Geophys Res 116, F01002. doi:10.1029/2010JF001722

    Article  Google Scholar 

  • Best M, Bobrowsky P, Douma M, Carlotto V, Pari W (2009) Geophysical surveys at Machu Picchu, Peru: results for landslide hazard investigations. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 265–273

    Chapter  Google Scholar 

  • Bühler Y, Christen M, Kowalski J, Bartelt P (2011) Sensitivity of snow avalanche simulations to digital elevation model quality and resolution. Ann Glaciol 52:72–80

    Article  Google Scholar 

  • Bulmer MH, Farquhar T (2010) Design and installation of a Prototype Geohazard Monitoring System near Machu Picchu, Peru. Nat Hazards Earth Syst Sci 10:2031–2038. doi:10.5194/nhess-10-2031-2010

    Article  Google Scholar 

  • Canuti P, Margottini C, Casagli N, Delmonaco G, Falconi L, Fanti R, Ferretti A, Lollino G, Puglisi C, Spizzichino D, Tarchi D (2009) Monitoring, geomorphological evolution and slope stability of Inca Citadel of Machu Picchu: results from Italian INTERFRASI project. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 249–257

    Chapter  Google Scholar 

  • CARE (2009) Climate Vulnerability and Capacity Analysis—Handbook. pp 1–52

  • Carey M, McDowell G, Huggel C, Jackson J, Portocarrero C, Reynolds JM, Vicuña L (2015) Integrated approaches to adaptation and disaster risk reduction in dynamic socio-cryospheric systems. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks and disasters. Elsevier, Amsterdam, pp 219–261

    Chapter  Google Scholar 

  • Carlotto V, Cardenas J, Romero D, Valdivia W, Mattos E, Tyntaya, D (2000) Los aluviones de Aobamba (Machupicchu) y Sacsara (Santa Teresa): geologia, geodinamica y analisis de datos. In: Proccedings of X Congreso Peruano de Geología, Lima, Sociedad Geologica del Peru. Lima, p 126

  • Christen M, Bartelt P, Kowalski J (2010a) Back calculation of the “In den Arelen” avalanche with RAMMS: interpretation of model results. Ann Glaciol 51:161–168

    Article  Google Scholar 

  • Christen M, Kowalski J, Bartelt P (2010b) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14. doi:10.1016/j.coldregions.2010.04.005

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ. doi:10.1007/s10064-013-0538-8

    Google Scholar 

  • Costa J, Schuster R (1988) The formation and failure of natural dams. Geol Soc Am Bull 7:1054–1068

    Article  Google Scholar 

  • Evans S (1986) Landslide damming in the Cordillera of Western Canada. Collection 3:111–130

    Google Scholar 

  • Guzzetti F, Reichenbach P, Wieczorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3:491–503

    Article  Google Scholar 

  • Hergarten S, Robl J (2015) Modelling rapid mass movements using the shallow water equations in Cartesian coordinates. Nat Hazards Earth Syst Sci 15(3):671–685

    Article  Google Scholar 

  • Hermoza J, Ortiz M, Benavente R, Mattos E, Portocarrero C, Tamayo W, Villafurete J (1998) Informe geológico glaciológico del aluvión de Aobamba-Cusco. EGEMSA (Empresa de generación electrica Machupicchu S.A.)

  • Holcombe E, Anderson M, Holm-Nielsen N (2013) Learning by doing: community based landslide risk reduction. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 297–302

    Chapter  Google Scholar 

  • Huggel C, Haeberli W, Kääb A, Bieri D, Richardson S (2004) Assessment procedures for glacial hazards in the Swiss Alps. Can Geotech J 41:1068–1083

    Article  Google Scholar 

  • Huggel C, Rohrer M, Calanca P, Salzmann N, Vergara W, Quispe N, Ceballos JL (2012) Early warning systems: the “last mile” of adaptation. EOS, Trans Am Geophys Union 93:209–211

    Article  Google Scholar 

  • Huggel C, Scheel M, Albrecht F, Andres N, Calanca P, Jurt C, Khabarov N, Mira-Salama D, Rohrer M, Salzmann N, Silva Y, Silvestre E, Vicuña L, Zappa M (2015) A framework for the science contribution in climate adaptation: experiences from science-policy processes in the Andes. Environ Sci Pol 47:80–94. doi:10.1016/j.envsci.2014.11.007

    Article  Google Scholar 

  • Hungr O (2005) Classification and terminology. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Heidelberg, Germany, in association with Praxis Publishing Ltd., Chichester, UK, pp 9–23

  • Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach. Geomorphology 78:359–372. doi:10.1016/j.geomorph.2006.02.003

    Article  Google Scholar 

  • Hussin HY, Quan Luna B, van Westen CJ, Christen M, Malet J-P, van Asch TWJ (2012) Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps. Nat Hazards Earth Syst Sci 12(10):3075–3090. doi:10.5194/nhess-12-3075-2012

    Article  Google Scholar 

  • Jakob M, Holm K, Weatherly H, Liu S, Ripley N (2013) Debris flood risk assessment for Mosquito Creek, British Columbia, Canada. Nat Hazards 65:1653–1681. doi:10.1007/s11069-012-0436-6

    Article  Google Scholar 

  • Jurt C (2009) Perceptions of natural hazards in the context of social, cultural, economic and political risks. Dissertation, University of Bern

  • Künzler M, Huggel C, Ramírez JM (2012) A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Nat Hazards 64:767–796. doi:10.1007/s11069-012-0271-9

    Article  Google Scholar 

  • Petley DN (2012) Landslides and engineered slopes: protecting society through improved understanding. In: Eberhardt E, Froese C, Turner K, Leroueil S (eds) Landslides and engineered slopes: protecting society through improved understanding. Taylor & Francis, London, pp 3–13

    Google Scholar 

  • Pirulli M, Sorbino G (2008) Assessing potential debris flow runout: a comparison of two simulation models. Nat Hazards Earth Syst Sci 8:961–971

    Article  Google Scholar 

  • Puglisi C, Falconi L, Lentini A, Leoni G, Prada CR (2013) Debris flow risk assessment in the Aguas Calientes Village (Cusco, Perù). In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 519–526

    Chapter  Google Scholar 

  • Raetzo H, Lateltin O, Bollinger D, Tripet J (2002) Hazard assessment in Switzerland—codes of practice for mass movements. Bull Eng Geol Environ 621:263–268. doi:10.1007/s10064-002-0163-4

    Google Scholar 

  • Reichenbach P, Günther A, Glade T (2013) Preface “Landslide hazard and risk assessment at different scales.”. Nat Hazards Earth Syst Sci 13:2169–2171. doi:10.5194/nhess-13-2169-2013

    Article  Google Scholar 

  • Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94:496–507. doi:10.1016/j.geomorph.2006.10.041

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77. doi:10.1023/A:1008064220727

    Article  Google Scholar 

  • Salm B (1993) Flow, flow transition and runout distances of flowing avalanches. Ann Glaciol 18:221–226

    Google Scholar 

  • Salm B, Burkhard A, Gubler HU (1990) Berechnung von Fliesslawinen. Eine Anleitung für den Praktiker mit Beispielen. Eidgenössisches Institut für Schnee- und Lawinenforschung SLF, Davos

    Google Scholar 

  • Sassa K (2013) Social impact of IPL 101–1 “Landslide Investigation in Inca’s World Heritage, Machu Pichu, Peru”. In: Sassa K, Rouhban B, Briceño S, McSaveney M, He B (eds) Landslides: global risk preparedness. Springer, Berlin, pp 43–58

    Chapter  Google Scholar 

  • Sassa K, Fukuoka H, Carreno R (2009) Landslide investigation and capacity building in the Machu Picchu—Aguas Calientes Area (IPL C101-1). In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 229–248

    Chapter  Google Scholar 

  • Scheel MLM, Rohrer M, Huggel C, Santos Villar D, Silvestre E, Huffman GJ (2011) Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol Earth Syst Sci 15:2649–2663. doi:10.5194/hess-15-2649-2011

    Article  Google Scholar 

  • Scheidl C, Rickenmann D, McArdell BW (2013) Runout prediction of debris flows and similar mass movements. Landslide Science and Practice: Spatial Analysis and Modelling, pp 221–229

  • Schneider D, Huggel C, Cochachin A, Guillén S, García J (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155. doi:10.5194/adgeo-35-145-2014

    Article  Google Scholar 

  • Schraml K, Thomschitz B, McArdell BW, Graf C, Kaitna R (2015) Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat Hazards Earth Syst Sci 15(7):1483–1492

    Article  Google Scholar 

  • Smith EA, Asrar G, Furuhama Y et al (2007) International Global Precipitation Measurement (GPM) program and mission: an overview. In: Levizzani V, Bauer P, Turk FJ (eds) Measuring precipitation from space: EURAINSAT and the future. United States Government, pp 611–653

  • Sudmeier-Rieux K, Jaquet S, Derron M-H, Jaboyedoff M, Devkota S (2012) A case study of coping strategies and landslides in two villages of Central-Eastern Nepal. Appl Geogr 32:680–690. doi:10.1016/j.apgeog.2011.07.005

    Article  Google Scholar 

  • UNEP (2012) Early warning systems: a state of the art analysis and future directions. UNEP, Nairobi

    Google Scholar 

  • UNFCCC (2012) Current knowledge on relevant methodologies and data requirements as well as lessons learned and gaps identified at different levels, in assessing the risk of loss and damage associated with the adverse effects of climate change. UN Technical paper

  • Vilimek V, Klimes J, Vlcko J, Carreno R (2006) Catastrophic debris flows near Machu Picchu village (Aguas Calientes), Peru. Environ Geol 50:1041–1052. doi:10.1007/s00254-006-0276-3

    Article  Google Scholar 

  • Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73:159–162, 212–217, 246–249, 280–285. [German]

  • Westoby MJ, Glasser NF, Brasington J, Hambrey MJ, Quincey DJ, Reynolds JM (2014) Modelling outburst floods from moraine-dammed glacial lakes. Earth Sci Rev 134:137–159. doi:10.1016/j.earscirev.2014.03.009

    Article  Google Scholar 

Download references

Acknowledgments

All the work presented in this study is part of the activities of the “Proyecto Glaciares,” funded by the Swiss Agency for Development and Cooperation (SDC), executed by the University of Zurich and Swiss partner institutions, in close collaboration with CARE Peru. We acknowledge the comments and suggestions from the Editor S. Cuomo and the reviews of P. Bobrowsky and an anonymous reviewer, which helped improving the article. K. Price from CARE Peru provided valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Frey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frey, H., Huggel, C., Bühler, Y. et al. A robust debris-flow and GLOF risk management strategy for a data-scarce catchment in Santa Teresa, Peru. Landslides 13, 1493–1507 (2016). https://doi.org/10.1007/s10346-015-0669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0669-z

Keywords

Navigation