Skip to main content

Advertisement

Log in

Regional-scale landslide susceptibility modelling in the Cordillera Blanca, Peru—a comparison of different approaches

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This study applied existing methods of landslide susceptibility modelling of the mountainous area of the Cordillera Blanca (Peru), which is prone to landslides. In heterogeneous regions as in the Cordillera Blanca, the performance of a physically based approach Stability Index Mapping (SINMAP) was compared to empirical statistical models using logistic regression and a landslide density model. All models were applied to three different digital elevation models (DEMs): ASTER GDEM, SRTM (both 30-m spatial resolution), and TanDEM-X (12-m spatial resolution). Obtained results were evaluated using the area under the receiver operating characteristic curve (AUC) approach, once for a landslide inventory which extends over the whole study area and once using an inventory of a smaller area. The physically based approach (AUCs between 0.567 and 0.625) performed worse than the statistical models (AUCs from 0.672 to 0.759) over the large area. Additionally, all models received higher performances within the small area. This coincided with differences of the variability of the DEM-derived characteristics (e.g. slope angle and curvature) from the small to the large evaluation area. Using the smaller evaluation area, all models received higher AUC values (0.743–0.799), and the impact of the DEMs was less visible. The analysis of the susceptibility showed that mainly the same slopes are considered as most or least susceptible by all models, but SINMAP is classifying larger areas as unstable or stable. Overall, this study showed that regional-scale landslide susceptibility modelling can lead to reasonable results even in regions with scarce model input data, but performances of different DEMs and models need to be evaluated carefully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alejandrino IK, Lagmay AM, Eco RN (2016) Shallow landslide hazard mapping for Davao Oriental, Philippines, using deterministic GIS model. In: Drake J, Kontar Y, Eichelberger J et al (eds) Communicating climate-change and natural hazard risk and cultivating resilience, advances in natural and technological hazards research. Springer, Cham, pp 131–147

    Chapter  Google Scholar 

  • Ambrosi C, Strozzi T, Scapozza C, Wegmüller U (2018) Landslide hazard assessment in the Himalayas (Nepal and Bhutan) based on Earth-Observation Data. Eng Geol 237:217–228

    Article  Google Scholar 

  • Arnone E, Francipane A, Scarbaci A, Puglisi C, Noto LV (2016) Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping. Environ Model Softw 84:467–481. https://doi.org/10.1016/j.envsoft.2016.07.016

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. https://doi.org/10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Bai S, Lü G, Wang J, Zhou P, Ding L (2011) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ Earth Sci 62:139–149. https://doi.org/10.1007/s12665-010-0509-3

    Article  Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2002) TRIGRS — a Fortran program for transient rainfall Infiltration and grid-based regional slope-stability analysis, Version 2.0

  • Carey M (2010) In the shadows of melting glaciers - climate change and Andean Society, 1st edn. Oxford University Press, New York

    Book  Google Scholar 

  • Claessens L, Heuvelink GBM, Schoorl JM, Veldkamp A (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surf Process Landf 30:461–477. https://doi.org/10.1002/esp.1155

    Article  Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, van den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3:81–93. https://doi.org/10.5194/nhess-3-81-2003

    Article  Google Scholar 

  • de Castro Portes R, Spinola DN, Reis JS et al (2016) Pedogenesis across a climatic gradient in tropical high mountains, Cordillera Blanca — Peruvian Andes. Catena 147:441–452. https://doi.org/10.1016/j.catena.2016.07.027

    Article  Google Scholar 

  • Deutsches Zentrum für Luft- und Raumfahrt e.V. (2009) TanDEM-X - Die Erde in drei Dimensionen

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165. https://doi.org/10.1007/s11069-012-0347-6

    Article  Google Scholar 

  • Dietrich WE, Montgomery DR (1998) SHALSTAB: a digital terrain model for mapping shallow landslide potential

  • Earth G (2015) Peru, 9° 09′ 05.23″ S, 77° 41′ 36.92″ W

  • England KA (2011) A GIS approach to landslide hazard management for the West Coast region, New Zealand. University of Canterbury

  • Evans SG, Bishop NF, Fidel Smoll L, Valderrama Murillo P, Delaney KB, Oliver-Smith A (2009) A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Eng Geol 108:96–118. https://doi.org/10.1016/j.enggeo.2009.06.020

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:1–43. https://doi.org/10.1029/2005RG000183

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  • Felicísimo ÁM, Cuartero A, Remondo J, Quirós E (2012) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:175–189. https://doi.org/10.1007/s10346-012-0320-1

    Article  Google Scholar 

  • Fuchs M, Torizin J, Kühn F (2014) The effect of DEM resolution on the computation of the factor of safety using an infinite slope model. Geomorphology 224:16–26. https://doi.org/10.1016/j.geomorph.2014.07.015

    Article  Google Scholar 

  • GEO-SLOPE International Ltd. (2012) Stability modeling with SLOPE/W. 246

  • Glade T, Crozier MJ (2005) A review of scale dependency in landslide hazard and risk analysis. In: Crozier MJ (ed) Landslide hazard and risk. Wiley, Chichester, pp 75–138

    Chapter  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. https://doi.org/10.1016/j.geomorph.2006.04.007

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. https://doi.org/10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Haneberg WC (2004) A rational probabilistic method for spatially distributed landslide hazard assessment. Environ Eng Geosci 10:27–43. https://doi.org/10.2113/10.1.27

    Article  Google Scholar 

  • Havenith HB, Strom A, Caceres F, Pirard E (2006) Analysis of landslide susceptibility in the Suusamyr region, Tien Shan: statistical and geotechnical approach. Landslides 3:39–50. https://doi.org/10.1007/s10346-005-0005-0

    Article  Google Scholar 

  • He S, Pan P, Dai L, Wang H, Liu J (2012) Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China. Geomorphology 171–172:30–41. https://doi.org/10.1016/j.geomorph.2012.04.024

    Article  Google Scholar 

  • Hilbe JM (2011) Logistic regression. Encycl Stat Sci:1–6

  • Hubbard B, Heald A, Reynolds JM, Quincey D, Richardson SD, Luyo MZ, Portilla NS, Hambrey MJ (2005) Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surf Process Landf 30:1251–1264

    Article  Google Scholar 

  • Huggel C, Cochachin A, Frey H, et al (2012) Integrated assessment of high mountain hazards, related risk reduction and climate change adaptation strategies in the Peruvian Cordilleras. In: IDRC Davos. pp 329–332

  • Instituto Nacional de Estadística e Informática (2015) Perú: población total al 30 de Junio, por grupos quinquenales de edad, según departemento, provincia y distrito, 2015. In: Población y vivienda. http://www.inei.gob.pe/media/MenuRecursivo/indices_tematicos/cuadro001_1.xls. Accessed 20 Nov 2017

  • Jäger S, Wieczorek GF (1994) Landslide susceptibility in the Tully Valley Area, Finger Lakes Region, New York. In: US Geol. Surv. https://pubs.usgs.gov/of/1994/ofr-94-0615/tvstudy.htm. Accessed 7 Dec 2017

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439. https://doi.org/10.1007/s10346-013-0391-7

    Article  Google Scholar 

  • King G, Zeng L (2001) Logistic regression in rare events data. Polit Anal 9:137–163

    Article  Google Scholar 

  • Klimeš J (2008) Analysis of preparatory factors of landslides, Vsetínské Vrchy highland, Czech Republic. Acta Res Rep 17:47–53

    Google Scholar 

  • Klimeš J (2012) Geomorphology and natural hazards of the selected glacial valleys, Cordillera Blanca, Peru. Acta Univ Carolinae Geogr 47:25–31

    Google Scholar 

  • Klimeš J, Vilímek V (2011) A catastrophic landslide near Rampac Grande in the Cordillera Negra, northern Peru. Landslides 8:309–320. https://doi.org/10.1007/s10346-010-0249-1

    Article  Google Scholar 

  • Klimeš J, Novotný J, Novotná I, de Urries BJ, Vilímek V, Emmer A, Strozzi T, Kusák M, Rapre AC, Hartvich F, Frey H (2016) Landslides in moraines as triggers of glacial lake outburst floods: example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides 13:1461–1477. https://doi.org/10.1007/s10346-016-0724-4

    Article  Google Scholar 

  • Kritikos T, Davies T (2014) Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: application to western Southern Alps of New Zealand. Landslides 12:1–25. https://doi.org/10.1007/s10346-014-0533-6

    Article  Google Scholar 

  • Lacroix P, Berthier E, Maquerhua ET (2015) Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote Sens Environ 165:148–158. https://doi.org/10.1016/j.rse.2015.05.010

    Article  Google Scholar 

  • Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manag 34:223–232. https://doi.org/10.1007/s00267-003-0077-3

    Article  Google Scholar 

  • Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50:847–855. https://doi.org/10.1007/s00254-006-0256-7

    Article  Google Scholar 

  • Lee S, Chwae U, Min K (2002) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46:149–162. https://doi.org/10.1016/S0169-555X(02)00057-0

    Article  Google Scholar 

  • Legorreta Paulin G, Bursik M, Lugo-Hubp J, Zamorano Orozco JJ (2010) Effect of pixel size on cartographic representation of shallow and deep-seated landslide, and its collateral effects on the forecasting of landslides by SINMAP and Multiple Logistic Regression landslide models. Phys Chem Earth 35:137–148. https://doi.org/10.1016/j.pce.2010.04.008

    Article  Google Scholar 

  • Levermore CD, Beder TS, Brennan PF et al (2012) Sources of uncertainty and error. In: Assessing the reliability of complex models, 1st edn. The National Academies Press, Washington, D.C., pp 19–30

    Google Scholar 

  • Lliboutry LA (1975) La catastrophe de Yungay (Pérou). In: UGGI-IAHS-ICSI Symposium Moscow, 1971. pp 353–363

  • Lliboutry LA, Arnao BM, Pautre A, Schneider B (1977) Glaciological problems set by the dangerous lakes in Cordillera Blanca, Peru. I. Historical failures of morainic dams, their causes and prevention. J Glaciol 18:239–254

    Article  Google Scholar 

  • Meisina C, Scarabelli S (2007) A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 87:207–223. https://doi.org/10.1016/j.geomorph.2006.03.039

    Article  Google Scholar 

  • Mergili M, Marchesini I, Rossi M, Guzzetti F, Felling W (2014) Spatially distributed three-dimensional slope stability modelling in a raster GIS. Geomorphology 206:178–195

    Article  Google Scholar 

  • Michel GP, Kobiyama M, Goerl RF (2014) Comparative analysis of SHALSTAB and SINMAP for landslide susceptibility mapping in the Cunha River basin, southern Brazil. J Soils Sediments 14:1266–1277. https://doi.org/10.1007/s11368-014-0886-4

    Article  Google Scholar 

  • NASA LP DAAC UE (2011) ASTER GDEM version 2. https://earthexplorer.usgs.gov/. Accessed 10 Oct 2016

  • Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5:271–290. https://doi.org/10.5194/tc-5-271-2011

    Article  Google Scholar 

  • ÖAV (Österreichischer Alpenverein) (2006) Alpenvereinskarte Cordillera Blanca Nord (Perú)

  • Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. In: 8th Congress of the International Association of Engineering Geology. Vancouver, British Colombia, p 8

  • Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68:1443–1464. https://doi.org/10.1007/s12665-012-1842-5

    Article  Google Scholar 

  • Plafker G, Ericksen GE, Concha JF (1971) Geological aspects of the May 31, 1970, Peru earthquake. Bull Seismol Soc Am 61:543–578

    Google Scholar 

  • Posner AJ, Georgakakos KP (2015) Normalized landslide index method for susceptibility map development in El Salvador. Nat Hazards 79:1825–1845. https://doi.org/10.1007/s11069-015-1930-4

    Article  Google Scholar 

  • Pradhan AMS, Kim YT (2015) Application and comparison of shallow landslide susceptibility models in weathered granite soil under extreme rainfall events. Environ Earth Sci 73:5761–5771. https://doi.org/10.1007/s12665-014-3829-x

    Article  Google Scholar 

  • Pradhan B, Mezaal MR (2017) Optimized rule sets for automatic landslide characteristic detection in a highly vegetated forests. In: Pradhan B (ed) Laser scanning applications in landslide assessment, 1st edn. Springer, Cham, pp 51–68

    Chapter  Google Scholar 

  • Ross SM (2010) Linear regression. In: Introductory statistics, 3rd edn. Elsevier, Burlington, pp 537–599

    Book  Google Scholar 

  • Rowbotham DN, Dudycha D (1998) GIS modelling of slope stability in Phewa Tal watershed, Nepal. Geomorphology 26:151–170. https://doi.org/10.1016/S0169-555X(98)00056-7

    Article  Google Scholar 

  • Sarkar S, Roy AK, Raha P (2016) Deterministic approach for susceptibility assessment of shallow debris slide in the Darjeeling Himalayas, India. Catena 142:36–46. https://doi.org/10.1016/j.catena.2016.02.009

    Article  Google Scholar 

  • Sarma CP, Krishna AM, Dey A (2015) Landslide hazard assessment of Guwahati region using physically based models. In: 6th Annual Conference of the International Society for Integrated Disaster Risk Management. New Delhi, pp 1–13

  • Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet JP (2018) Optimizing landslide susceptibility zonation: effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology 301:10–20. https://doi.org/10.1016/j.geomorph.2017.10.018

    Article  Google Scholar 

  • Schneider D, Huggel C, Cochachin A, Guillén S, García J (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155. https://doi.org/10.5194/adgeo-35-145-2014

    Article  Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides - processes, prediction, and land use, 1st edn. American Geophysical Union, Washington DC

    Book  Google Scholar 

  • Somos-Valenzuela M, Mckinney DC (2011) Modeling a Glacial Lake Outburst Flood (GLOF) from Palcacocha Lake, Peru

  • Steger S, Bell R, Petschko H, Glade T (2015) Evaluating the effect of modelling methods and landslide inventories used for statistical susceptibility modelling. In: Engineering Geology for Society and Territory, pp 201–204

  • Sterlacchini S, Ballabio C, Blahut J, Masetti M, Sorichetta A (2011) Spatial agreement of predictive patterns in landslide susceptibility maps. Geomorphology 125:51–61

    Article  Google Scholar 

  • Tachikawa T, Kaku M, Iwasaki A et al (2011) ASTER Global Digital Elevation Model Version 2 – summary of validation results

  • Terhorst B, Kreja R (2009) Slope stability modelling with SINMAP in a settlement area of the Swabian Alb. Landslides 6:309–319. https://doi.org/10.1007/s10346-009-0167-2

    Article  Google Scholar 

  • Thiebes B, Bell R, Glade T et al (2016) Application of SINMAP and analysis of model sensitivity - case studies from Germany and. Rev Roum Géogr 60:3–25

    Google Scholar 

  • USGS (2015) Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. https://lta.cr.usgs.gov/SRTM1Arc. Accessed 3 Jan 2018

  • van Beek R, Nieuwenhuis JD, van Asch TWJ (2002) Assessment of the influence of changes in land use and climate on landslide activity in a Mediterranean environment. Universiteit Utrecht

  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J et al (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology 76:392–410. https://doi.org/10.1016/j.geomorph.2005.12.003

    Article  Google Scholar 

  • van Westen CJ, Jaiswal P, Ghosh S et al (2012) Landslide inventory, hazard and risk assessment in India. In: Pradhan B, Buchroithner M (eds) Terrigenous mass movements detection, modelling, early warning and mitigation using geoinformation technology, 1st edn. Springer, Heidelberg, pp 239–282

    Google Scholar 

  • Vilímek V, Zapata ML, Stemberk J (2000) Slope movements in Callejón de Huaylas, Peru. Acta Univ Carolinae Geogr 35:39–51

    Google Scholar 

  • Vilímek V, Zapata ML, Klimeš J, Patzelt Z, Santillán N (2005) Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2:107–115. https://doi.org/10.1007/s10346-005-0052-6

    Article  Google Scholar 

  • Villacorta S, Fidel L, Carrión BZ (2012) Mapa de susceptibilidad por movimientos en masa del Perú. Rev la Asoc Geológica Argentina 269:393–399

    Google Scholar 

  • Wegmüller U, Bonforte A, De Beni E et al (2014) Morphological changes at Mt. Etna detected by TanDEM-X. In: EGU General Assembly. Wien

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31:2097–2110. https://doi.org/10.1029/95WR01136

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35:1125–1138. https://doi.org/10.1016/j.cageo.2008.08.007

    Article  Google Scholar 

  • Zizioli D, Meisina C, Valentino R, Montrasio L (2013) Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy. Nat Hazards Earth Syst Sci 13:559–573. https://doi.org/10.5194/nhess-13-559-2013

    Article  Google Scholar 

Download references

Acknowledgments

For site-specific information about the study area and further help, Cesar Salazar Checa and the whole team of the Glaciology and Water Resources Unit of the National Water Authority in Huaraz, Peru, were a big support.

Funding

This study has been funded by the European Space Agency (ESA), in the framework of the Alcantara No. 5 pilot study “InSAR for landslide hazard assessment in Peru (Contract-No. 4000117655/16/F/MOS)”. Additionally, the article preparation was supported by the long-term conceptual development research organisation RVO: 67985891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bueechi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueechi, E., Klimeš, J., Frey, H. et al. Regional-scale landslide susceptibility modelling in the Cordillera Blanca, Peru—a comparison of different approaches. Landslides 16, 395–407 (2019). https://doi.org/10.1007/s10346-018-1090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-1090-1

Keywords

Navigation