Skip to main content

Advertisement

Log in

Biomaterials for Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

ASP:

Aspartic acid

BCP:

Biphasic calcium phosphate

BG:

Bioactive glass

BG1:

Bioactive glass of composition Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2

BMP:

Bone morphogenetic protein

BSP:

Bone sialoprotein

CaP:

Calcium phosphate

CNSFs:

Chitosan nanofibers

Col I:

Collagen I

CSD:

Critical size defect

CS-MA:

Chondroitin sulfate-methacrylate

ECM:

Extracellular matrix

ECs:

Endothelial cells

FDA:

Food and Drug Administration

GAG:

Glycosaminoglycan

HA:

Hydroxyapatite

HAc:

Hyaluronic acid

HIF:

Hypoxia-inducible factor

hMSCs:

Human mesenchymal stem cells

IL:

Interleukin

Mg:

Magnesium

MAPK/ERK:

Mitogen-activated protein kinase/extracellular signal-regulated kinase

mMSCs:

Mouse mesenchymal stem cells

MRI:

Magnetic resonance imaging

PA:

Peptide amphiphile

PCL:

Poly(ε-caprolactone)

pDNA:

Plasmid DNA

PECE:

PEG-PCL-PEG copolymer

PEG:

Poly(ethylene glycol)

PEGDMA:

Poly(ethylene glycol)-dimethacrylate

PGA:

Poly(glycolic acid)

PHEMA:

Poly(2-hydroxyethyl methacrylate)

PLGA:

Poly(lactic-co-glycolic acid)

PMMA:

Poly(methylmethacrylate)

PPC:

Poly(propylene carbonate)

PPF:

Poly(propylene fumarate)

PVA-MA:

Poly(vinyl alcohol)-methacrylate

RGD:

Arginine-glycine-aspartic acid

rhBMP-2:

Recombinant human bone morphogenetic protein-2

rMSCs:

Rabbit mesenchymal stem cells

Runx2:

Runt-related transcription factor 2

SBF:

Simulated body fluid

Ta:

Tantalum

TBDC:

Teicoplanin-loaded borate bioactive glass

TCP:

Tricalcium phosphate

TGF:

Transforming growth factor

Ti:

Titanium

TNF:

Tumor necrosis factor

US-SWNTs:

Ultra-short single-walled carbon nanotubes

VEGF:

Vascular endothelial growth factor

References

  1. Amosi, N., S. Zarzhitsky, E. Gilsohn, O. Salnikov, E. Monsonego-Ornan, R. Shahar, and H. Rapaport. Acidic peptide hydrogel scaffolds enhance calcium phosphate mineral turnover into bone tissue. Acta Biomater. 8:2466–2475, 2012.

    CAS  PubMed  Google Scholar 

  2. Bal, B. S., M. N. Rahaman, P. Jayabalan, K. Kuroki, M. K. Cockrell, J. Q. Yao, and J. L. Cook. In vivo outcomes of tissue-engineered osteochondral grafts. J. Biomed. Mater. Res. B 93:164–174, 2010.

    Google Scholar 

  3. Balla, V. K., S. Bodhak, S. Bose, and A. Bandyopadhyay. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater. 6:3349–3359, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Bandyopadhyay, A., F. Espana, V. K. Balla, S. Bose, Y. Ohgami, and N. M. Davies. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 6:1640–1648, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Bhosale, A. M., and J. B. Richardson. Articular cartilage: structure, injuries and review of management. Br. Med. Bull. 87:77–95, 2008.

    PubMed  Google Scholar 

  6. Buckwalter, J. A., L. C. Rosenberg, and E. B. Hunziker. Articular cartilage: composition, structure, response to injury, and methods of facilitating repair. In: Articular Cartilage and Knee Joint Function: Basic Science and Arthroscopy, edited by J. Ewing. New York: Raven Press, 1990, pp. 19–56.

    Google Scholar 

  7. Buckwalter, J. A., H. J. Mankin, and A. J. Grodzinsky. Articular cartilage and osteoarthritis. Instr. Course Lect. 54:465–480, 2005.

    PubMed  Google Scholar 

  8. Buckwalter, J. A., M. J. Glimcher, R. R. Cooper, and R. Recker. Bone biology. J. Bone Joint Surg. Am. 77:1256–1275, 1995.

    Google Scholar 

  9. Cancedda, R., B. Dozin, P. Giannoni, and R. Quarto. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 22:81–91, 2003.

    CAS  PubMed  Google Scholar 

  10. Chen, J., H. Chen, P. Li, H. Diao, S. Zhu, L. Dong, R. Wang, T. Guo, J. Zhao, and J. Zhang. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCS induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32:4793–4805, 2011.

    CAS  PubMed  Google Scholar 

  11. Coburn, J. M., M. Gibson, S. Monagle, Z. Patterson, and J. H. Elisseeff. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc. Natl. Acad. Sci. U.S.A. 109:10012–10017, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Cohen, Jr., M. M. The new bone biology: pathologic, molecular, and clinical correlates. Am. J. Med. Genet. A 140:2646–2706, 2006.

    PubMed  Google Scholar 

  13. Cohen, N. P., R. J. Foster, and V. C. Mow. Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28:203–215, 1998.

    CAS  PubMed  Google Scholar 

  14. Cui, X., K. Breitenkamp, M. G. Finn, M. Lotz, and D. D. D’lima. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng. A 18:1304–1312, 2012.

    CAS  Google Scholar 

  15. Das, K., V. K. Balla, A. Bandyopadhyay, and S. Bose. Surface modification of laser-processed porous titanium for load-bearing implants. Scripta Mater. 59:822–825, 2008.

    CAS  Google Scholar 

  16. Dormer, N. H., M. Singh, L. Wang, C. J. Berkland, and M. S. Detamore. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann. Biomed. Eng. 38:2167–2182, 2010.

    PubMed Central  PubMed  Google Scholar 

  17. Downey, P. A., and M. I. Siegel. Bone biology and the clinical implications for osteoporosis. Phys. Ther. 86:77–91, 2006.

    PubMed  Google Scholar 

  18. Fu, S., P. Ni, B. Wang, B. Chu, L. Zheng, F. Luo, J. Luo, and Z. Qian. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 33:4801–4809, 2012.

    CAS  PubMed  Google Scholar 

  19. Galperin, A., R. A. Oldinski, S. J. Florczyk, J. D. Bryers, M. Zhang, and B. D. Ratner. Integrated bi-layered scaffold for osteochondral tissue engineering. Adv. Healthcare Mater. 2(6):872–883, 2012.

    Google Scholar 

  20. Gerhardt, L. C., K. L. Widdows, M. M. Erol, A. Nandakumar, I. S. Roqan, T. Ansari, and A. R. Boccaccini. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J. Biomed. Mater. Res. A 101A:827–841, 2012.

    Google Scholar 

  21. Getgood, A. M. J., S. J. Kew, R. Brooks, H. Aberman, T. Simon, A. K. Lynn, and N. Rushton. Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen–glycosaminoglycan biopolymer in a caprine model. Knee. 19:422–430, 2011.

    PubMed  Google Scholar 

  22. Guo, H., J. Su, J. Wei, H. Kong, and C. Liu. Biocompatibility and osteogenicity of degradable ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomater. 5:268–278, 2009.

    CAS  PubMed  Google Scholar 

  23. Guo, X., C. Wang, C. Duan, M. Descamps, Q. Zhao, L. Dong, S. Lü, K. Anselme, J. Lu, and Y. Q. Song. Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Eng. 10:1830–1840, 2004.

    CAS  PubMed  Google Scholar 

  24. Hari Reddi, A. Regulation of cartilage and bone differentiation by bone morphogenetic proteins. Curr. Opin. Cell Biol. 4:850–855, 1992.

    Google Scholar 

  25. Healy, K. E., and R. E. Guldberg. Bone tissue engineering. J. Musculoskelet. Neuronal Interact. 7:328–330, 2007.

    CAS  PubMed  Google Scholar 

  26. Heinegård, D., and A. Oldberg. Structure and biology of cartilage and bone matrix noncollagenous macromolecules. FASEB J. 3:2042–2051, 1989.

    PubMed  Google Scholar 

  27. Henslee, A. M., D. H. Gwak, A. G. Mikos, and F. K. Kasper. Development of a biodegradable bone cement for craniofacial applications. J. Biomed. Mater. Res. A 110A:2252–2259, 2012.

    Google Scholar 

  28. Hertz, A., and I. J. Bruce. Inorganic materials for bone repair or replacement applications. Nanomedicine. 2:899–918, 2007.

    CAS  PubMed  Google Scholar 

  29. Holland, T. A., and A. G. Mikos. Advances in drug delivery for articular cartilage. J. Control Release 86:1–14, 2003.

    CAS  PubMed  Google Scholar 

  30. Hollinger, J. O., and G. C. Battistone. Biodegradable bone repair materials synthetic polymers and ceramics. Clin. Orthop. Relat. Res. 207:290–306, 1986.

    CAS  PubMed  Google Scholar 

  31. Holmes, R. E. Bone regeneration within a coralline hydroxyapatite implant. Plast. Reconstr. Surg. 63:626–633, 1979.

    CAS  PubMed  Google Scholar 

  32. Huang, W., D. E. Day, K. Kittiratanapiboon, and M. N. Rahaman. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J. Mater. Sci. Mater. Med. 17:583–596, 2006.

    CAS  PubMed  Google Scholar 

  33. Hunziker, E. B. Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthr. Cartil. 7:15–28, 1999.

    CAS  PubMed  Google Scholar 

  34. Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10:432–463, 2002.

    CAS  PubMed  Google Scholar 

  35. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543, 2000.

    CAS  PubMed  Google Scholar 

  36. Huttenlocker, A. K., H. N. Woodward, and B. K. Hall. The biology of bone. In: Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation, edited by K. Padian, and E. T. Lamm. Berkeley: University of California Press, 2013, pp. 13–34.

    Google Scholar 

  37. Jayakumar, P., and L. Di Silvio. Osteoblasts in bone tissue engineering. Proc. Inst. Mech. Eng. H 224:1415–1440, 2010.

    CAS  PubMed  Google Scholar 

  38. Jeong, C. G., H. Zhang, and S. J. Hollister. Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification. J. Biomed. Mater. Res. A. 100A:2088–2096, 2012.

    CAS  Google Scholar 

  39. Jiang, J., A. Tang, G. A. Ateshian, X. E. Guo, C. T. Hung, and H. H. Lu. Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann. Biomed. Eng. 38:2183–2196, 2010.

    PubMed  Google Scholar 

  40. Jones, J. R., L. M. Ehrenfried, and L. L. Hench. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973, 2006.

    CAS  PubMed  Google Scholar 

  41. Kang, Y., S. Kim, J. Bishop, A. Khademhosseini, and Y. Yang. The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold. Biomaterials 33:6998–7007, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Khanarian, N. T., N. M. Haney, R. A. Burga, and H. H. Lu. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33:5247–5258, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Kim, H. J., I. K. Park, J. H. Kim, C. S. Cho, and M. S. Kim. Gas foaming fabrication of porous biphasic calcium phosphate for bone regeneration. Tissue Eng. Regen. Med. 9:63–68, 2012.

    CAS  Google Scholar 

  44. Kim, K., D. Dean, J. Wallace, R. Breithaupt, A. G. Mikos, and J. P. Fisher. The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials 32:3750–3763, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Kolk, A., J. Handschel, W. Drescher, D. Rothamel, F. Kloss, M. Blessmann, M. Heiland, K.-D. Wolff, and R. Smeets. Current trends and future perspectives of bone substitute materials–from space holders to innovative biomaterials. J. Craniomaxillofac. Surg. 40:706–718, 2012.

    PubMed  Google Scholar 

  46. Kon, E., M. Delcogliano, G. Filardo, M. Busacca, A. Di Martino, and M. Marcacci. Novel nano-composite multilayered biomaterial for osteochondral regeneration a pilot clinical trial. Am. J. Sports Med. 39:1180–1190, 2011.

    PubMed  Google Scholar 

  47. Lamoureux, F., M. Baud’huin, L. Duplomb, D. Heymann, and F. Rédini. Proteoglycans: key partners in bone cell biology. BioEssays 29:758–771, 2007.

    CAS  PubMed  Google Scholar 

  48. Lanza, R. P., R. Langer, and J. P. Vacanti. Principles of Tissue Engineering (2nd ed.). San Diego: Academic Press, 2000.

    Google Scholar 

  49. Lee, S. H., and H. Shin. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv. Drug Deliv. Rev. 59:339–359, 2007.

    CAS  PubMed  Google Scholar 

  50. Levorson, E. J., P. R. Sreerekha, K. P. Chennazhi, F. K. Kasper, S. V. Nair, and A. G. Mikos. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed. Mater. 8:014103, 2013.

    PubMed  Google Scholar 

  51. Li, Y., J. Xiong, P. D. Hodgson, and C. Wen. Effects of structural property and surface modification of Ti6Ta4Sn scaffolds on the response of SaOS2 cells for bone tissue engineering. J. Alloy. Compd. 494:323–329, 2010.

    CAS  Google Scholar 

  52. Lin, Z. Y., Z. X. Duan, X. D. Guo, J. F. Li, H. W. Lu, Q. X. Zheng, D. P. Quan, and S. H. Yang. Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo. J Control Release 144:190–195, 2010.

    CAS  PubMed  Google Scholar 

  53. Mandal, B. B., A. Grinberg, E. Seok Gil, B. Panilaitis, and D. L. Kaplan. High-strength silk protein scaffolds for bone repair. Proc. Natl. Acad. Sci. U.S.A. 109:7699–7704, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Mandelbaum, B. R., J. E. Browne, F. Fu, L. Micheli, J. B. Mosely, C. Erggelet, T. Minas, and L. Peterson. Articular cartilage lesions of the knee. Am. J. Sports Med. 26:853–861, 1998.

    CAS  PubMed  Google Scholar 

  55. Marks, S. C., and S. N. Popoff. Bone cell biology: the regulation of development, structure, and function in the skeleton. Am. J. Anat. 183:1–44, 2005.

    Google Scholar 

  56. Mieszawska, A. J., N. Fourligas, I. Georgakoudi, N. M. Ouhib, D. J. Belton, C. C. Perry, and D. L. Kaplan. Osteoinductive silk–silica composite biomaterials for bone regeneration. Biomaterials 31:8902–8910, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Miguel, B. S., R. Kriauciunas, S. Tosatti, M. Ehrbar, C. Ghayor, M. Textor, and F. E. Weber. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds. J. Biomed. Mater. Res. A 94:1023–1033, 2010.

    Google Scholar 

  58. Minatoya, T., T. Furusawa, M. Sato, Y. Matsushima, and H. Unuma. Bioactive glass cloth that promotes new bone formation. Key Eng. Mater. 529:266–269, 2013.

    Google Scholar 

  59. Mohan, N., N. H. Dormer, K. L. Caldwell, V. H. Key, C. J. Berkland, and M. S. Detamore. Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng. A 17:2845–2855, 2011.

    CAS  Google Scholar 

  60. Nguyen, L. H., A. K. Kudva, N. S. Saxena, and K. Roy. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel. Biomaterials 32:6946–6952, 2011.

    CAS  PubMed  Google Scholar 

  61. Nooeaid, P., V. Salih, J. P. Beier, and A. R. Boccaccini. Osteochondral tissue engineering: scaffolds, stem cells and applications. J. Cell Mol. Med. 16:2247–2270, 2012.

    CAS  PubMed  Google Scholar 

  62. Nukavarapu, S. P., and D. L. Dorcemus. Osteochondral tissue engineering: current strategies and challenges. Biotechnol. Adv. 31(5):706–721, 2012.

    PubMed  Google Scholar 

  63. Ott, S. M. New aspects of normal bone biology. In: The Spectrum of Mineral and Bone Disorders in Chronic Kidney Disease, edited by K. Olgaard, J. Silver, and I. B. Salusky. Oxford: Oxford University Press, 2010, pp. 15–28.

    Google Scholar 

  64. Panagiotis, M. Classification of non-union. Injury 36:S30–S37, 2005.

    PubMed  Google Scholar 

  65. Patel, Z. S., S. Young, Y. Tabata, J. A. Jansen, M. E. K. Wong, and A. G. Mikos. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 43:931–940, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Place, E. S., L. Rojo, E. Gentleman, J. P. Sardinha, and M. M. Stevens. Strontium- and zinc-alginate hydrogels for bone tissue engineering. Tissue Eng. A 17:2713–2722, 2011.

    CAS  Google Scholar 

  67. Rahaman, M. N., D. E. Day, B. Sonny Bal, Q. Fu, S. B. Jung, L. F. Bonewald, and A. P. Tomsia. Bioactive glass in tissue engineering. Acta Biomater. 7:2355–2373, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Ratcliffe, A., and V. C. Mow. Articular cartilage. In: Extracellular Matrix: Tissue Function, edited by W. D. Comper. Amsterdam: Harwood Academic Publishers, 1996, pp. 234–302.

    Google Scholar 

  69. Re’em, T., F. Witte, E. Willbold, E. Ruvinov, and S. Cohen. Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially-presented TGF-beta and BMP-4 in a bi-layer affinity binding system. Acta Biomater. 8:3283–3293, 2012.

    PubMed  Google Scholar 

  70. Recker, R. R., and J. Barger-Lux. Embryology, anatomy, and microstructure of bone. In: Disorders of Bone and Mineral Metabolism, edited by F. L. Coe, and M. J. Favus. New York: Raven Press, 1992, pp. 219–240.

    Google Scholar 

  71. Renno, A. C. M., F. C. J. Van De Watering, M. R. Nejadnik, M. C. Crovace, E. D. Zanotto, J. G. C. Wolke, J. A. Jansen, and J. Van Den Beucken. Incorporation of bioactive glass in calcium phosphate cement: in vivo evaluation. Acta Biomater. 9:5728–5739, 2013.

    CAS  PubMed  Google Scholar 

  72. Salerno, A., S. Iannace, and P. A. Netti. Graded biomimetic osteochondral scaffold prepared via CO2 foaming and micronized NaCl leaching. Mater. Lett. 82:137–140, 2012.

    CAS  Google Scholar 

  73. Salgado, C. L., E. M. S. Sanchez, C. A. C. Zavaglia, A. B. Almeida, and P. L. Granja. Injectable biodegradable polycaprolactone–sebacic acid gels for bone tissue engineering. Tissue Eng. A 18:137–146, 2011.

    Google Scholar 

  74. Santos, C. F. L., A. P. Silva, L. Lopes, I. Pires, and I. J. Correia. Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Mater. Sci. Eng. C 32:1293–1298, 2012.

    CAS  Google Scholar 

  75. Schwarz, S., L. Koerber, A. F. Elsaesser, E. Goldberg-Bockhorn, A. M. Seitz, L. Dürselen, A. Ignatius, P. Walther, R. Breiter, and N. Rotter. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng. A 18:2195–2209, 2012.

    CAS  Google Scholar 

  76. Shah, R. N., N. A. Shah, M. M. D. R. Lim, C. Hsieh, G. Nuber, and S. I. Stupp. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc. Natl. Acad. Sci. U.S.A. 107:3293–3298, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Sheehy, E. J., T. Vinardell, C. T. Buckley, and D. J. Kelly. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater. 9:5484–5492, 2012.

    PubMed  Google Scholar 

  78. Simon, M., C. Lagneau, J. Moreno, M. Lissac, F. Dalard, and B. Grosgogeat. Corrosion resistance and biocompatibility of a new porous surface for titanium implants. Eur. J. Oral Sci. 113:537–545, 2005.

    CAS  PubMed  Google Scholar 

  79. Sitharaman, B., X. Shi, X. F. Walboomers, H. Liao, V. Cuijpers, L. J. Wilson, A. G. Mikos, and J. A. Jansen. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43:362–370, 2008.

    CAS  PubMed  Google Scholar 

  80. Sohier, J., G. Daculsi, S. Sourice, K. De Groot, and P. Layrolle. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. J. Biomed. Mater. Res. A 92:1105–1114, 2010.

    PubMed  Google Scholar 

  81. Spicer, P. P., J. D. Kretlow, A. M. Henslee, M. Shi, S. Young, N. Demian, J. A. Jansen, M. E. Wong, A. G. Mikos, and F. K. Kasper. In situ formation of porous space maintainers in a composite tissue defect. J. Biomed. Mater. Res. A 100A:827–833, 2012.

    CAS  Google Scholar 

  82. Takemoto, M., S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo, and T. Nakamura. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 26:6014–6023, 2005.

    CAS  PubMed  Google Scholar 

  83. Tang, G., H. Zhang, Y. Zhao, Y. Zhang, X. Li, and X. Yuan. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen. J. Biomater. Sci. Polym. Ed. 23:2241–2257, 2012.

    CAS  Google Scholar 

  84. Tarafder, S., V. K. Balla, N. M. Davies, A. Bandyopadhyay, and S. Bose. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. Early view, 2012.

  85. Teixeira, S., H. Fernandes, A. Leusink, C. Van Blitterswijk, M. P. Ferraz, F. J. Monteiro, and J. De Boer. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 93:567–575, 2010.

    CAS  PubMed  Google Scholar 

  86. Temenoff, J. S., and A. G. Mikos. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440, 2000.

    CAS  PubMed  Google Scholar 

  87. Ulrich-Vinther, M., M. D. Maloney, E. M. Schwarz, R. Rosier, and R. J. O’keefe. Articular cartilage biology. J. Am. Acad. Orthop. Surg. 11:421–430, 2003.

    PubMed  Google Scholar 

  88. Väänänen, K. Mechanism of osteoclast mediated bone resorption—rationale for the design of new therapeutics. Adv. Drug Deliv. Rev. 57:959–971, 2005.

    PubMed  Google Scholar 

  89. Venkatesan, J., B. Ryu, P. N. Sudha, and S.-K. Kim. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 50:393–402, 2012.

    CAS  PubMed  Google Scholar 

  90. Wang, L., and J. P. Stegemann. Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials 31:3976–3985, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Willers, C., D. J. Wood, and M. H. Zheng. A current review on the biology and treatment of articular cartilage defects (part I & part II). J. Musculoskelet. Res. 7:157–181, 2003.

    Google Scholar 

  92. Witte, F., H. Ulrich, C. Palm, and E. Willbold. Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling. J. Biomed. Mater. Res. A 81:757–765, 2007.

    CAS  PubMed  Google Scholar 

  93. Wu, C., R. Miron, A. Sculean, S. Kaskel, T. Doert, R. Schulze, and Y. Zhang. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials 32:7068–7078, 2011.

    CAS  PubMed  Google Scholar 

  94. Wu, C., Y. Zhou, W. Fan, P. Han, J. Chang, J. Yuen, M. Zhang, and Y. Xiao. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33:2076–2085, 2011.

    PubMed  Google Scholar 

  95. Xue, W., B. V. Krishna, A. Bandyopadhyay, and S. Bose. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 3:1007–1018, 2007.

    CAS  PubMed  Google Scholar 

  96. Yang, W., F. Yang, Y. Wang, S. K. Both, and J. A. Jansen. In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater. 9:4505–4512, 2013.

    CAS  PubMed  Google Scholar 

  97. Yaszemski, M. J., and A. W. Yasko. Musculoskeletal tissue engineering for orthopedic surgical applications. In: Frontiers in Tissue Engineering, edited by C. W. Patrick, A. G. Mikos, and L. V. McIntire. Amsterdam: Elsevier, 1998, pp. 197–212.

    Google Scholar 

  98. Young, S., Z. S. Patel, J. D. Kretlow, M. B. Murphy, P. M. Mountziaris, L. S. Baggett, H. Ueda, Y. Tabata, J. A. Jansen, and M. Wong. Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model. Tissue Eng. A 15:2347–2362, 2009.

    CAS  Google Scholar 

  99. Yu, H. S., G. Z. Jin, J. E. Won, I. Wall, and H. W. Kim. Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering. J. Biomed. Mater. Res. A 100A:2431–2440, 2012.

    CAS  Google Scholar 

  100. Yuan, H., H. Fernandes, P. Habibovic, J. De Boer, A. M. C. Barradas, A. De Ruiter, W. R. Walsh, C. A. Van Blitterswijk, and J. D. De Bruijn. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. U.S.A. 107:13614–13619, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Zhang, X., W. T. Jia, Y. F. Gu, W. Xiao, X. Liu, D. P. Wang, C. Q. Zhang, W. H. Huang, M. N. Rahaman, and D. E. Day. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 31:5865–5874, 2010.

    CAS  PubMed  Google Scholar 

  102. Zhao, J., W. Han, H. Chen, M. Tu, S. Huan, G. Miao, R. Zeng, H. Wu, Z. Cha, and C. Zhou. Fabrication and in vivo osteogenesis of biomimetic poly (propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J. Mater. Sci. Mater. Med. 23:517–525, 2012.

    CAS  PubMed  Google Scholar 

  103. Zhou, J., H. Lin, T. Fang, X. Li, W. Dai, T. Uemura, and J. Dong. The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials 31:1171–1179, 2010.

    CAS  PubMed  Google Scholar 

  104. Zhou, J., C. Xu, G. Wu, X. Cao, L. Zhang, Z. Zhai, Z. Zheng, X. Chen, and Y. Wang. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen–hydroxyapatite layered scaffolds. Acta Biomater. 7:3999–4006, 2011.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research towards the development of biomaterials for tissue engineering applications has been supported by the National Institutes of Health (R01 AR048756, R01 AR057083 and R01 DE017441) and the Armed Forces Institute of Regenerative Medicine (W81XWH-08-2-0032). EJL acknowledges support by a National Science Foundation Graduate Research Fellowship.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios G. Mikos.

Additional information

Associate Editor Robert Nerem oversaw the review of this article.

Review submitted to the special issue of Annals of Biomedical Engineering based on the workshop “Frontiers in Bioengineering” held at Georgia Institute of Technology, February 25–26, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.J., Kasper, F.K. & Mikos, A.G. Biomaterials for Tissue Engineering. Ann Biomed Eng 42, 323–337 (2014). https://doi.org/10.1007/s10439-013-0859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0859-6

Keywords

Navigation