Skip to main content

Advertisement

Log in

Inheritance of Behavioral and Neuroanatomical Phenotypical Variance: Hybrid Mice Are Not Always More Stable Than Inbreds

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Many investigators have attempted to confirm the prediction that increased levels of heterozygosity entail greater developmental stability, manifesting itself through decreased phenotypical variation. The evidence presented so far is equivocal. The predicted relationship has been found in some morphological studies, but not in others. I propose that the variability of a character should be seen as different from the character itself. For most morphological characters, natural selection promotes strong canalization of development but, to facilitate responses to environmental changes, the organism needs to retain malleability of physiological and behavioral traits. These different types of selection should lead to distinct genetic architectures for these phenotypes. I report on the results of a diallel cross between four inbred mouse strains. Qualitatively different genetic architectures were in fact revealed for variation in behaviors in the open-field. In a second study, variances of inbred and hybrid populations for hippocampal morphometry were studied. Again, hybrids were not always less variable than inbreds and sometimes even more variable. It follows that there exists no one-to-one relation between heterozygosity and developmental stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Atchley W. R., Fitch W. M. (1991). Gene trees and the origins of inbred strains of mice. Science 254:554–558

    Article  PubMed  CAS  Google Scholar 

  • Banbury Conference (1997). Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19:755–759

    Article  Google Scholar 

  • Beacham T. D., Withler R. E. (1985). Heterozygosity and morphological variability of chum salmon (Oncorhynchus keta) in southern British Columbia. Heredity 54:313–322

    Article  PubMed  Google Scholar 

  • Broadhurst P. L., Jinks J. L. (1974). What genetical architecture can tell us about the natural selection of behavioural traits. In van Abeelen J. H. F., (eds), The Genetics of Behaviour. North-Holland, Amsterdam

    Google Scholar 

  • Cohen-Salmon C. (1987). Differences in patterns of pup care in Mus musculus domesticus. VIII. Effects of previous experience and parity in XLII inbred mice. Physiol. Behav. 40:177–180

    Article  PubMed  CAS  Google Scholar 

  • Crusio W. E. (1987). A note on the analysis of reciprocal effects in diallel crosses. J. Genet. 66:177–185

    Article  Google Scholar 

  • Crusio W. E. (1990). HOMAL: a computer program for selecting adequate data tranformations. J. Hered. 8:173

    Google Scholar 

  • Crusio W. E. (1992). Quantitative genetics. In: Goldowitz D., Wahlsten D., Wimer R. E., (eds), Techniques for the Genetic Analysis of Brain and Behavior: Focus on the Mouse, Vol 8. Elsevier, Amsterdam

    Google Scholar 

  • Crusio W. E. (2000). An introduction to quantitative genetics. In: Jones B. C., Mormède P., (eds), Neurobehavioral Genetics: Methods and Applications. CRC Press, Boca Raton, FL, USA, pp. 1–2

    Google Scholar 

  • Crusio W. E. (2004). Flanking gene and genetic background problems in genetically manipulated mice. Biol. Psychiatry 56:381–385

    Article  PubMed  CAS  Google Scholar 

  • Crusio W. E., Genthner-Grimm G., Schwegler H. (1986). A quantitative-genetic analysis of hippocampal variation in the mouse. J. Neurogenet. 3:203–214

    Article  PubMed  CAS  Google Scholar 

  • Crusio W. E., Kerbusch J. M. L., van Abeelen J. H. F. (1984). The replicated diallel cross: A generalized method of analysis. Behav. Genet. 14:81–104

    Article  PubMed  CAS  Google Scholar 

  • Crusio W. E., Schmitt A. (1996). Prenatal effects of parity on behavioral ontogeny in mice. Physiol. Behav. 59:1171–1174

    Article  PubMed  CAS  Google Scholar 

  • Crusio W. E., Schwegler H., van Abeelen J. H. F. (1989a). Behavioral responses to novelty and structural variation of the hippocampus in mice. I. Quantitative-genetic analysis of behavior in the open-field. Behav. Brain Res. 32:75–80

    Article  CAS  Google Scholar 

  • Crusio W. E., Schwegler H., van Abeelen J. H. F. (1989b). Behavioral responses to novelty and structural variation of the hippocampus in mice. II. Multivariate genetic analysis. Behav. Brain Res. 32:81–88

    Article  CAS  Google Scholar 

  • Crusio W. E., van Abeelen J. H. F. (1986). The genetic architecture of behavioural responses to novelty in mice. Heredity 56:55–63

    Article  PubMed  Google Scholar 

  • Crusio W. E., van Abeelen J. H. F. (1993). Canalization of behavioral development and heterozygosity in mice. Behav. Genet. 23:550 (abstract)

    Article  Google Scholar 

  • Danscher G., Zimmer J. (1978). An improved Timm sulphide silver method for light and electron microscopic localization of heavy metals in biological tissues. Histochemistry 55:27–40

    Article  PubMed  CAS  Google Scholar 

  • Eanes W. F. (1978). Morphological variance and enzyme heterozygosity in the monarch butterfly. Nature 276:263

    Article  Google Scholar 

  • Fisher R. A. (1958). The Genetical Theory of Natural Selection, 2nd ed. Dover Publications, New York

    Google Scholar 

  • Fleischer R. C., Johnston R. F., Klitz W. J. (1983). Allozymic heterozygosity and morphological variation in house sparrows. Nature 304:628–630

    Article  PubMed  CAS  Google Scholar 

  • Handford P. (1980). Heterozygosity at enzyme loci and morphological variation. Nature 286:261–262

    Article  PubMed  CAS  Google Scholar 

  • Hayman B. I. (1954a). The analysis of variance of diallel tables. Biometrics 10: 235–244.

    Article  Google Scholar 

  • Hayman B. I. (1954b). The theory and analysis of diallel crosses. Genetics 39:789–809

    CAS  Google Scholar 

  • Henderson N. D. (1981). A fit mouse is a hoppy mouse: jumping behavior in 15-day-old Mus musculus. Dev. Psychobiol. 14:459–472

    Article  PubMed  CAS  Google Scholar 

  • Henderson N. D. (1989). Genetic influences on behavior of infant Mus domesticus: a comparison of results from diallels derived from single and multiple populations. Behav. Genet. 19:551–574

    Article  PubMed  CAS  Google Scholar 

  • Hyde J. S. (1973). Genetic homeostasis and behavior: analysis, data, and theory. Behav. Genet. 3:233–245

    Article  PubMed  CAS  Google Scholar 

  • Jinks J. L. (1954). The analysis of continuous variation in a diallel cross of Nicotiana rustica varities. Genetics 39:767–788

    PubMed  CAS  Google Scholar 

  • Jinks J. L. (1955). A survey of the genetical basis of heterosis in a variety of diallel crosses. Heredity 9:223–238

    Article  Google Scholar 

  • Jinks J. L., Hayman B. I. (1953). The analysis of diallel crosses. Maize Genet. News Lett. 27:48–54

    Google Scholar 

  • Jinks J. L., Mather K. (1955). Stability in development of heterozygotes and homozygotes. Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 143:561–578

    Article  CAS  Google Scholar 

  • Kerbusch S., van der Staay F. J., Hendriks N. (1981). A searching procedure for transformations and models in a classical Mendelian cross breeding study. Behav. Genet. 11:239–254

    Article  PubMed  CAS  Google Scholar 

  • King D. P. F. (1985). Enzyme heterozygosity associated with anatomical character variance and growth in the herring (Clupea harengus L.). Heredity 54:289–296

    Article  PubMed  Google Scholar 

  • Leamy L. (1986). Directional selection and developmental stability: evidence from fluctuating asymmetry of dental characters in mice. Heredity 57:381–388

    Article  PubMed  Google Scholar 

  • Leary R. F., Allendorf F. W., Knudsen K. L. (1983). Developmental stability and enzyme heterozygosity in rainbow trout. Nature 301:71–72

    Article  PubMed  CAS  Google Scholar 

  • Leary R. F., Allendorf F. W., Knudsen K. L. (1984). Superior developmental stability of heterozygotes at enzyme loci in salmon fishes. Am. Nat. 124:540–551

    Article  Google Scholar 

  • Lerner I. M. (1954). Genetic Homeostasis. Oliver and Boyd, London

    Google Scholar 

  • Livshits G., Kobyliansky E. (1984). Biochemical heterozygosity as a predictor of developmental homeostasis in man. Ann. Hum. Genet. 48:173–184

    Article  PubMed  CAS  Google Scholar 

  • Lyon M. F. (2001). X-chromosme inactivation. In: Reeve E.C.R., (eds). Encyclopedia of Genetics. Fitzroy Dearborn, Chicago, IL, USA

    Google Scholar 

  • McAndrew B. J., Ward R. D., Beardmore J. A. (1986). Growth rate and heterozygosity in the plaice, Plauronectes platessa. Heredity 57:171–180

    Article  Google Scholar 

  • Mitton J. B. (1978). Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273:661–662

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J., Nadel L. (1978). The Hippocampus as a Cognitive Map. Clarendon Press, Oxford

    Google Scholar 

  • Schwegler H., Crusio W. E., Lipp H.-P., Heimrich B. (1988). Water-maze learning in the mouse correlates with variation in hippocampal morphology. Behav. Genet. 18:153–165

    Article  PubMed  CAS  Google Scholar 

  • Schwegler H., Lipp H.-P. (1983). Hereditary covariations of neuronal circuitry and behavior: correlations between the proportions of hippocampal synaptic fields in the regio inferior and two-way avoidance in mice and rats. Behav. Brain Res. 7:1–38

    Article  PubMed  CAS  Google Scholar 

  • Soule M. E. (1979). Heterozygosity and developmental stability: another look. Evolution 33:396–401

    Article  Google Scholar 

  • Strauss S. H. (1987). Heterozygosity and developmental stability under inbreeding and crossbreeding in Pinus attenuata. Evolution 41:331–339

    Article  Google Scholar 

  • Thoday J. M. (1953). Components of fitness. Symp. Soc. Exp. Biol. 7:96–113

    Google Scholar 

  • van Abeelen J. H. F. (1963). Mouse mutants studied by means of ethological methods. I. Ethogram. Genetica 34:79–94

    Article  Google Scholar 

  • Via S., Lande R. (1985). Genotype-environment interaction and the evolution of phenotype plasticity. Evolution 39:505–522

    Article  Google Scholar 

  • Waddington C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Article  Google Scholar 

  • Wolfer D. P., Crusio W. E., Lipp H.-P. (2002). Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci. 25:336–340

    Article  PubMed  CAS  Google Scholar 

  • Zink R. M., Smith M. F., Patton J. L. (1985). Associations between heterozygosity and morphological variance. J. Hered. 76:415–420

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank Gabi Genthner-Grimm (Heidelberg, Germany) and Herbert Schwegler (Magdeburg, Germany) for their help in collecting the neuroanatomical data. The behavioral data presented in this reanalysis were collected while I was a graduate student in the laboratory of the late Hans van Abeelen (1936–1998), my teacher and mentor, who became my closest friend. Most of the quantitative-genetic analyses were carried out a few years before Hans passed away and I benefited from intensive discussions of the results with him. The Introduction of this article is based on an abstract that we wrote together (Crusio and van Abeelen, 1993). Unfortunately, the writing-up of the final article had to wait several years. If it were not for his untimely death, Hans would certainly have been a co-author of this article, which I dedicate to his memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim E. Crusio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crusio, W.E. Inheritance of Behavioral and Neuroanatomical Phenotypical Variance: Hybrid Mice Are Not Always More Stable Than Inbreds. Behav Genet 36, 723–731 (2006). https://doi.org/10.1007/s10519-005-9039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-9039-2

KEY WORDS

Navigation