Skip to main content

Advertisement

Log in

Deferasirox-TAT(47–57) peptide conjugate as a water soluble, bifunctional iron chelator with potential use in neuromedicine

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Deferasirox (DFX), an orally active and clinically approved iron chelator, is being used extensively for the treatment of iron overload. However, its water insolubility makes it cumbersome for practical use. In addition to this, the low efficacy of DFX to remove brain iron prompted us to synthesize and evaluate a DFX-TAT(47–57) peptide conjugate for its iron chelation properties and permeability across RBE4 cell line, an in vitro model of the blood–brain barrier. The water-soluble conjugate was able to remove labile iron from buffered solution as well as from iron overloaded sera, and the permeability of DFX-TAT(47–57) conjugate into RBE4 cells was not affected compared to parent deferasirox. The iron bound conjugate was also able to translocate through the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci 5(Suppl):S18–S25

    Article  Google Scholar 

  • Batista-Nascimento L, Pimentel C, Menezes RA, Rodrigues-Pousada C (2012) Iron and neurodegeneration: from cellular homeostasis to disease. Oxid Med Cell Longev. doi:10.1155/2012/128647

    Google Scholar 

  • Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57(4):559–577

    Article  CAS  PubMed  Google Scholar 

  • Bruin GJM, Faller T, Wiegand H, Schweitzer A, Nick H, Schneider J, Boernsen K-O, Waldmeier F (2008) Pharmacokinetics, distribution, metabolism, and excretion of Deferasirox and its iron complex in rats. Drug Metab Dispos 36(12):2523–2538

    Article  CAS  PubMed  Google Scholar 

  • Choudhury VP, Naithani R (2007) Current status of iron overload and chelation with deferasirox. Indian J Pediatr 74(8):759–764

    Article  Google Scholar 

  • Druglead (2015) http://www.druglead.com/cds/deferasirox.html. Accessed 12th June 2015

  • Espósito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI (2003) Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood 102(7):2670–2677

    Article  PubMed  Google Scholar 

  • Espósito BP, Epsztejn S, Breuer W, Cabantchik ZI (2002) A review of fluorescence methods for assessing labile iron in cells and biological fluids. Anal Biochem 304(1):1–18

    Article  PubMed  Google Scholar 

  • Finkenstedt A, Wolf E, Höfner E, Gasser BI, Bösch S, Bakry R, Creus M, Kremser C, Schocke M, Theurl M, Moser P, Schranz M, Bonn G, Poewe W, Vogel W, Janecke AR, Zoller H (2010) Hepatic but not brain iron is rapidly chelated by deferasirox in aceruloplasminemia due to a novel gene mutation. J Hepatol 53(6):1101–1107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2015) Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system: guidance for industry. Food and Drug Administation Rockville, MD. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm070246.pdf. Accessed 12th June 2015

  • Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Machini MT, Silvestre DM, Nomura CS, Espósito BP (2014) Cell penetrating peptide (CPP)-conjugated Desferrioxamine for enhanced neuroprotection: synthesis and in vitro evaluation. Bioconjugate Chem 25(11):2067–2080

    Article  CAS  Google Scholar 

  • Kamalinia G, Khodagholi F, Atyabi F, Amini M, Shaerzadeh F, Sharifzadeh M, Dinarvand R (2013) Enhanced brain delivery of Deferasirox-Lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies. Mol Pharm 10(12):4418–4431

    Article  CAS  PubMed  Google Scholar 

  • Kurrikoff K, Suhorut J, Langel Ü (2011) Chapter 37: cell-penetrating peptides in cancer targeting. In: Kratz F, Senter P, Steinhagen H (eds) Drug delivery in oncology: from basic research to cancer therapy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1187–1217

    Chapter  Google Scholar 

  • Langel Ü (2002) Cell-penetrating peptides: processes and applications. CRC Press, Boca Raton, p 257

    Google Scholar 

  • Lee S-M, Yoon M-Y, Park H-R (2008) Protective effects of Paeonia lactiflora pall on hydrogen peroxide-induced apoptosis in PC12 cells. Biosci Biotechnol Biochem 72(5):1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Mazel M, Clair P, Rousselle C, Vidal P, Scherrmann J-M, Mathieu D, Temsamani J (2001) Doxorubicin-peptide conjugates overcome multidrug resistance. Anti-cancer Drug 12(2):107–116

    Article  CAS  Google Scholar 

  • Mishra A, Lai GH, Schmidt NW, Sun VZ, Rodriguez AR, Tong R, Tang L, Cheng J, Deming TJ, Kamei DT, Wong GCL (2011) Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc Natl Acad Sci USA 108(41):16883–16888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mounsey RB, Teismann P (2012) Chelators in the treatment of iron accumulation in Parkinson's disease. Int J Cell Biol. doi:10.1155/2012/983245

    PubMed Central  PubMed  Google Scholar 

  • Novartis (2015) https://www.pharma.us.novartis.com/product/pi/pdf/exjade.pdf. Accessed 12th June 2015

  • Reichel A, Abbot NJ, Begley DJ (2002) Evaluation of the RBE4 cell line to explore carrier-mediated drug delivery to the CNS via the L-system amino acid transporter at the blood-brain barrier. J Drug Target 10(4):277–283

    Article  CAS  PubMed  Google Scholar 

  • Rousselle C, Clair P, Lefauconnier JM, Kaczorek M, Scherrmann JM, Temsamani J (2000) New advances in the transport of Doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. J Mol Pharmacol 57(4):679–686

    CAS  Google Scholar 

  • Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S (2014) Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS ONE 9(1):e85115

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285(5433):1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Tai M, Matsuhashi N, Ichii O, Suzuki T, Ejiri Y, Kono S, Terada T, Miyajima H, Harada M (2014) Case of presymptomatic aceruloplasminemia treated with deferasirox. Hepatol Res 44(12):1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm I, Fazakas C, Krizbai IA (2011) In vitro models of the blood-brain barrier. Acta Neurobiol Exp 71(1):113–128, and the references cited therein

  • Yang LP, Keam SJ, Keating GM (2007) Deferasirox: a review of its use in the management of transfusional chronic iron overload. Drugs 67(15):2211–2230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DG received a postdoctoral fellowship from São Paulo Research Foundation (FAPESP 11/18958-0). FAPESP and CNPq funded these investigations. The authors thank Dr. Cleber Wanderlei Liria for discussions and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breno P. Espósito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, D., Vitorino, H.A., Alta, R.Y.P. et al. Deferasirox-TAT(47–57) peptide conjugate as a water soluble, bifunctional iron chelator with potential use in neuromedicine. Biometals 28, 869–877 (2015). https://doi.org/10.1007/s10534-015-9873-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9873-5

Keywords

Navigation