Skip to main content
Log in

Design considerations in the development and application of microdisc electrode arrays (MDEAs) for implantable biosensors

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The use of microlithographically fabricated Microdisc Electrode Arrays (MDEAs) in the development of implantable voltammetric biosensors necessitates design criteria that balances the overall footprint of the device with the advantages to be derived from large separation distances between non-interacting microdisc elements. Using the dynamic electroanalytical techniques of Multiple Scan Rate Cyclic Voltammetry (MSRCV) experiments with finite element simulations and Electrochemical Impedance Spectroscopy with equivalent circuit modeling, three unique MDEA designs; MDEA 050 (r = 25 μm, 5,184 discs), MDEA 100 (r = 50 μm, 1,296 discs) and MDEA 250 (r = 125 μm, 207 discs) of constant critical dimensions (center-to-center d/r = 4) and area (A = 0.1 cm2) were studied in 1.0 mM ferrocene monocarboxylic acid (FcCO2H) solution (in 0.1 M Tris/0.1 M KCl buffer, pH = 7.2). The critical disc-to-disc spacing (d/r) required to archive 67% of maximal current response was defined as optimal. Based on the predictive model, new MDEA designs; MDEA 001 (r = 0.5 μm, 127,324 discs), MDEA 002.5 (r = 1.25 μm, 20,372 discs), MDEA 005 (r = 2.5 μm, 5,093 discs), MDEA 010 (r = 5 μm, 1,273 discs), MDEA 015 (r = 7.5 μm, 566 discs), MDEA 020 (r = 10 μm, 318 discs) were simulated at 10 and 100 mV/s. The final disc count of each MDEA was dictated by the need to maintain a comparable electroactive area between the MDEAs, which was chosen to be 0.001 cm2, which in turn was dictated by the need to generate sufficient electrochemical current to be comfortably measured by common electrochemical detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • A.R. Abdur Rahman, G. Justin, A. Guiseppi-Elie, Towards an Implantable Biochip for Glucose and Lactate Monitoring using Micro-Disc Electrode Arrays (MDEAs). Biomedical Microdevices: BioMEMS and Biomedical NanoTechnology. Biomed. Microdevices (2008). doi:10.1007/s10544-008-9214-3

  • A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, Hoboken, 2001)

    Google Scholar 

  • P.N. Bartlett, S.L. Taylor, An accurate microdisc simulation model for recessed microdisc electrodes J. Electroanal. Chem. 453(1–2), 49–60 (1998). doi:10.1016/S0022-0728(98)00242-3

    Article  Google Scholar 

  • C.A. Basha, L. Rajendran, Theories of ultramicrodisc electrodes: review article Int. J. Electrochem. Sci 1, 268–282 (2006)

    Google Scholar 

  • B.A. Brookes, T.J. Davies, A.C. Fisher, R.G. Evans, S.J. Wilkins, K. Yunus, J.D. Wadhawan, R.G. Compton, Computational and experimental study of the cyclic voltammetry response of partially blocked electrodes. Part 1. Nonoverlapping, uniformly distributed blocking systems J. Phys. Chem. B 107(7), 1616–1627 (2003). doi:10.1021/jp021810v

    Article  Google Scholar 

  • T.J. Davies, R.G. Compton, The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: theory J. Electroanal. Chem. 585(1), 63–82 (2005). doi:10.1016/j.jelechem.2005.07.022

    Article  Google Scholar 

  • T.J. Davies, S. Ward-Jones, C.E. Banks, J. del Campo, R. Mas, F.X. Munoz, R.G. Compton, The cyclic and linear sweep voltammetry of regular arrays of microdisc electrodes: fitting of experimental data J. Electroanal. Chem. 585(1), 51–62 (2005). doi:10.1016/j.jelechem.2005.07.021

    Article  Google Scholar 

  • G. Justin, S. Finley, A.R. Abdur Rahman, A. Guiseppi-Elie, Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). Biomedical Microdevices: BioMEMS and Biomedical NanoTechnology. Biomed. Microdevices (2008). doi:10.1007/s10544-008-9214-3

  • K. Kerman, M. Kobayashi, E. Tamiya, Recent trends in electrochemical DNA biosensor technology Meas. Sci. Technol. 15(2), 1–11 (2004). doi:10.1088/0957-0233/15/2/R01

    Article  Google Scholar 

  • A. Lavacchi, I. Perissi, U. Bardi, S. Caporali, A. Fossati, Cyclic voltammetry simulation at microelectrode arrays, in Proceedings of the COMSOL Users Conference. 2006: Milano.

  • H.J. Lee, C. Beriet, R. Ferrigno, H.H. Girault, Cyclic voltammetry at a regular microdisc electrode array J. Electroanal. Chem. 502(1–2), 138–145 (2001). doi:10.1016/S0022-0728(01)00343-6

    Article  Google Scholar 

  • L. Lingerfelt, J. Karlinsey, J.P. Landers, A. Guiseppi-Elie, Impedimetric detection for DNA hybridization within microfluidic biochips. Methods in Molecular Biology. Totowa: Humana 385, 103. (2007)

  • A. Logrieco, D.W.M. Arrigan, K. Brengel-Pesce, P. Siciliano, I. Tothill, DNA arrays, electronic noses and tongues, biosensors and receptors for rapid detection of toxigenic fungi and mycotoxins: a review Food Addit. Contam. 22(4), 335–344 (2005). doi:10.1080/02652030500070176

    Article  Google Scholar 

  • O. Ordeig, C.E. Banks, T.J. Davies, F.J.D. Campo, F.X. Muñoz, R.G. Compton, Gold ultra-microelectrode arrays: application to the steady-state voltammetry of hydroxide ion in aqueous solution Anal. Sci 22(5), 679–683 (2006). doi:10.2116/analsci.22.679

    Article  Google Scholar 

  • L. Nyholm, Electrochemical techniques for lab-on-a-chip applications Analyst (Lond.) 130(5), 599–605 (2005). doi:10.1039/b415004j

    Article  Google Scholar 

  • X. Xie, D. Stüben, Z. Berner, J. Albers, R. Hintsche, E. Jantzen, Development of an ultramicroelectrode arrays (UMEAs) sensor for trace heavy metal measurement in water Sens. Actuators B Chem. 97(2–3), 168–173 (2004). doi:10.1016/j.snb.2003.08.012

    Article  Google Scholar 

  • A.R.A. Rahman, G. Justin, A. Guiseppi-Elie, Bioactive hydrogel layers on microdisc electrode arrays: impedance measurements and equivalent circuit modeling. Electroanalysis (2008) (submitted)

  • P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication. 1997: Society of Photo Optical.

  • Y. Saito, Rev. Polarog. Jpn 15, 177 (1968)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and by the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Guiseppi-Elie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, A.R.A., Guiseppi-Elie, A. Design considerations in the development and application of microdisc electrode arrays (MDEAs) for implantable biosensors. Biomed Microdevices 11, 701–710 (2009). https://doi.org/10.1007/s10544-008-9283-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9283-3

Keywords

Navigation