Skip to main content

Advertisement

Log in

Expression of neurotensin receptor-1 (NTS1) in primary breast tumors, cellular distribution, and association with clinical and biological factors

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Neurotensin receptor-1 (NTS1) is increasingly recognized as a potential target in diverse tumors including breast cancer, but factors associated with NTS1 expression have not been fully clarified.

Methods

We studied NTS1 expression using the Tissue MicroArray (TMA) of primary breast tumors from Institut Bergonié. We also studied association between NTS1 expression and clinical, pathological, and biological parameters, as well as patient outcomes.

Results

Out of 1419 primary breast tumors, moderate to strong positivity for NTS1 (≥ 10% of tumoral cells stained) was seen in 459 samples (32.4%). NTS1 staining was cytoplasmic in 304 tumors and nuclear in 155 tumors, a distribution which appeared mutually exclusive. Cytoplasmic overexpression of NTS1 was present in 21.5% of all breast tumors. In multivariate analysis, factors associated with cytoplasmic overexpression of NTS1 in breast cancer samples were higher tumor grade, Ki67 ≥ 20%, and higher pT stage. Cytoplasmic NTS1 was more frequent in tumors other than luminal A (30% versus 17.3%; p < 0.0001). Contrastingly, the main “correlates” of a nuclear location of NTS1 were estrogen receptor (ER) positivity, low E&E (Elston and Ellis) grade, Ki67 < 20%, and lower pT stage. In NTS1-positive samples, cytoplasmic expression of NTS1 was associated with shorter 10-year metastasis-free interval (p = 0.033) compared to NTS1 nuclear staining. Ancillary analysis showed NTS1 expression in 73% of invaded lymph nodes from NTS1-positive primaries.

Conclusion

NTS1 overexpression was found in about one-third of breast tumors from patients undergoing primary surgery with two distinct patterns of distribution, cytoplasmic distribution being more frequent in aggressive subtypes. These findings encourage the development of NTS1-targeting strategy, including radiopharmaceuticals for imaging and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

References

  1. Morgat C, Mishra AK, Varshney R et al (2014) Targeting Neuropeptide Receptors for Cancer Imaging and Therapy: Perspectives with Bombesin, Neurotensin, and Neuropeptide-Y Receptors. J Nucl Med 55:1650–1657. https://doi.org/10.2967/jnumed.114.142000

    Article  CAS  PubMed  Google Scholar 

  2. Younes M, Wu Z, Dupouy S et al (2014) Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib. Oncotarget 5:8252–8269

    Article  Google Scholar 

  3. Ye Y, Long X, Zhang L et al (2016) NTS/NTR1 co-expression enhances epithelial-to-mesenchymal transition and promotes tumor metastasis by activating the Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Oncotarget 7:70303–70322. https://doi.org/10.18632/oncotarget.11854

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Zhu S, Yi L et al (2014) Neurotensin receptor1 antagonist SR48692 reduces proliferation by inducing apoptosis and cell cycle arrest in melanoma cells. Mol Cell Biochem 389:1–8. https://doi.org/10.1007/s11010-013-1920-3

    Article  CAS  PubMed  Google Scholar 

  5. Körner M, Waser B, Strobel O et al (2015) Neurotensin receptors in pancreatic ductal carcinomas. EJNMMI Res. https://doi.org/10.1186/s13550-015-0094-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agopiantz M, Forgez P, Casse J-M et al (2017) Expression of neurotensin receptor 1 in endometrial adenocarcinoma is correlated with histological grade and clinical outcome. Virchows Arch 471:521–530. https://doi.org/10.1007/s00428-017-2215-y

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Z, Zhou Z, Xie J et al (2015) The significance of NTR1 expression and its correlation with β-catenin and EGFR in gastric cancer. Diagn Pathol 10:128. https://doi.org/10.1186/s13000-015-0356-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dupouy S, Viardot-Foucault V, Alifano M et al (2009) The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression. PLoS One 4:e4223. https://doi.org/10.1371/journal.pone.0004223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dupouy S, Doan VK, Wu Z et al (2014) Activation of EGFR, HER2 and HER3 by neurotensin/neurotensin receptor 1 renders breast tumors aggressive yet highly responsive to lapatinib and metformin in mice. Oncotarget 5:8235–8251

    Article  Google Scholar 

  10. Sauerbrei W, Taube SE, McShane LM et al (2018) Reporting Recommendations for tumor marker prognostic studies (REMARK): An abridged explanation and elaboration. J Natl Cancer Inst 110:803–811. https://doi.org/10.1093/jnci/djy088

    Article  PubMed  PubMed Central  Google Scholar 

  11. Morgat C, Macgrogan G, Brouste V et al (2017) Expression of gastrin-releasing peptide receptor in breast cancer and its association with pathologic, biologic, and clinical parameters: A study of 1,432 primary tumors. J Nucl Med 58:1401–1407

    Article  CAS  Google Scholar 

  12. Reubi JC (2014) Strict rules are needed for validation of G-protein-coupled receptor immunohistochemical studies in human tissues. Endocrine 47:659–661. https://doi.org/10.1007/s12020-014-0320-0

    Article  CAS  PubMed  Google Scholar 

  13. Riehle KJ, Kenerson HL, Riggle KM et al (2019) Neurotensin as a source of cyclic AMP and co-mitogen in fibrolamellar hepatocellular carcinoma. Oncotarget 10:5092–5102. https://doi.org/10.18632/oncotarget.27149

    Article  PubMed  PubMed Central  Google Scholar 

  14. Souazé F, Dupouy S, Viardot-Foucault V et al (2006) Expression of neurotensin and NT1 receptor in human breast cancer: A potential role in tumor progression. Cancer Res 66:6243–6249. https://doi.org/10.1158/0008-5472.CAN-06-0450

    Article  PubMed  Google Scholar 

  15. Morgat C, Chastel A, Molinie V et al (2019) Neurotensin receptor-1 expression in human prostate cancer: A pilot study on primary tumors and lymph node metastases. Int J Mol Sci 20:1721. https://doi.org/10.3390/ijms20071721

    Article  CAS  PubMed Central  Google Scholar 

  16. Cochrane DE, Carraway RE, Harrington K et al (2011) HMC-1 human mast cells synthesize neurotensin (NT) precursor, secrete bioactive NT-like peptide(s) and express NT receptor NTS1. Inflamm Res 60:1139–1151. https://doi.org/10.1007/s00011-011-0378-6

    Article  CAS  PubMed  Google Scholar 

  17. Allison KH, Hammond MEH, Dowsett M et al (2020) Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J Clin Oncol. https://doi.org/10.1200/JCO.19.02309

    Article  PubMed  Google Scholar 

  18. Chastel A, Worm DJ, Alves ID et al (2020) Design, synthesis, and biological evaluation of a multifunctional neuropeptide-Y conjugate for selective nuclear delivery of radiolanthanides. EJNMMI Res 10:16. https://doi.org/10.1186/s13550-020-0612-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bird JL, Simpson R, Vllasaliu D, Goddard AD (2017) Neurotensin receptor 1 facilitates intracellular and transepithelial delivery of macromolecules. Eur J Pharm Biopharm 119:300–309. https://doi.org/10.1016/j.ejpb.2017.06.027

    Article  CAS  PubMed  Google Scholar 

  20. Rodríguez Y, Almeida TA, Valladares F et al (2010) Neurotensin and neurotensin receptor 1 expression in human myometrium and uterine leiomyomas. Biol Reprod 83:641–647. https://doi.org/10.1095/biolreprod.110.084962

    Article  CAS  PubMed  Google Scholar 

  21. Toy-Miou-Leong M, Cortes CL, Beaudet A et al (2004) Receptor trafficking via the perinuclear recycling compartment accompanied by cell division is necessary for permanent neurotensin cell sensitization and leads to chronic mitogen-activated protein kinase activation. J Biol Chem 279:12636–12646. https://doi.org/10.1074/jbc.M303384200

    Article  CAS  PubMed  Google Scholar 

  22. Toy-Miou-Leong M, Bachelet C-M, Pélaprat D et al (2004) NT agonist regulates expression of nuclear high-affinity neurotensin receptors. J Histochem Cytochem 52:335–345. https://doi.org/10.1177/002215540405200304

    Article  CAS  PubMed  Google Scholar 

  23. Feldberg RS, Cochrane DE, Carraway RE et al (1998) Evidence for a neurotensin receptor in rat serosal mast cells. Inflamm res 47:245–250. https://doi.org/10.1007/s000110050325

    Article  CAS  PubMed  Google Scholar 

  24. Hwang JR, Baek MW, Sim J et al (2010) Intermolecular cross-talk between NTR1 and NTR2 neurotensin receptor promotes intracellular sequestration and functional inhibition of NTR1 receptors. Biochem Biophys Res Commun 391:1007–1013. https://doi.org/10.1016/j.bbrc.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  25. He T, Wang M, Wang H et al (2019) Evaluation of neurotensin receptor 1 as potential biomarker for prostate cancer theranostic use. Eur J Nucl Med Mol Imaging 46:2199–2207. https://doi.org/10.1007/s00259-019-04355-y

    Article  CAS  PubMed  Google Scholar 

  26. Gromova P, Rubin BP, Thys A et al (2011) Neurotensin receptor 1 Is expressed in gastrointestinal stromal tumors but not in interstitial cells of cajal. PLoS One 6:e14710. https://doi.org/10.1371/journal.pone.0014710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Fan S, Zhang L, Shi Y (2020) Glucagon-like peptide-1 receptor undergoes importin-α-dependent nuclear localization in rat aortic smooth muscle cells. FEBS Lett 594:1506–1516. https://doi.org/10.1002/1873-3468.13751

    Article  PubMed  Google Scholar 

  28. Müller C, Umbricht CA, Gracheva N et al (2019) Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-019-04345-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hindié E, Zanotti-Fregonara P, Quinto MA et al (2016) Dose deposits from 90Y, 177Lu, 111In, and 161Tb in micrometastases of various Sizes: implications for radiopharmaceutical therapy. J Nucl Med 57:759–764

    Article  Google Scholar 

  30. Alcocer-Ávila ME, Ferreira A, Quinto MA et al (2020) Radiation doses from 161Tb and 177Lu in single tumour cells and micrometastases. EJNMMI Physics 7:33. https://doi.org/10.1186/s40658-020-00301-2

    Article  PubMed  PubMed Central  Google Scholar 

  31. Callegari CCF, Cavalli IJ, Lima RS et al (2016) Copy number and expression analysis of FOSL1, GSTP1, NTSR1, FADD and CCND1 genes in primary breast tumors with axillary lymph node metastasis. Cancer Genet 209:331–339. https://doi.org/10.1016/j.cancergen.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  32. Baum RP, Singh A, Schuchardt C et al (2018) 177Lu-3BP-227 for neurotensin receptor 1–targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J Nucl Med 59:809–814. https://doi.org/10.2967/jnumed.117.193847

    Article  CAS  PubMed  Google Scholar 

  33. Maschauer S, Einsiedel J, Hübner H et al (2016) 18F- and 68Ga-labeled neurotensin peptides for PET imaging of neurotensin receptor 1. J Med Chem 59:6480–6492. https://doi.org/10.1021/acs.jmedchem.6b00675

    Article  CAS  PubMed  Google Scholar 

  34. Feng H, Zhang H, Wang M et al (2020) Improving tumor-to-background contrast through hydrophilic tetrazines: The construction of 18f labeled pet agents targeting non-small cell lung carcinoma. Chemistry 26:4690–4694. https://doi.org/10.1002/chem.202000028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fanelli R, Chastel A, Previti S et al (2020) Silicon-containing neurotensin analogues as radiopharmaceuticals for NTS1-positive tumors imaging. Bioconjugate Chem 31:2339–2349. https://doi.org/10.1021/acs.bioconjchem.0c00419

    Article  CAS  Google Scholar 

  36. Groheux D, Hindie E (2021) Breast cancer: initial workup and staging with FDG PET/CT. Clin Transl Imaging 9:221–231. https://doi.org/10.1007/s40336-021-00426-z

    Article  Google Scholar 

  37. Chan DL, Pavlakis N, Schembri GP et al (2017) Dual somatostatin Receptor/FDG PET/CT imaging in metastatic neuroendocrine tumours: proposal for a novel grading scheme with prognostic significance. Theranostics 7:1149–1158. https://doi.org/10.7150/thno.18068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hofman MS, Emmett L, Sandhu S et al (2021) [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397:797–804. https://doi.org/10.1016/S0140-6736(21)00237-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by Institut National du Cancer (INCa PLBIO 2017, THERACAN project) and was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57.

Author information

Authors and Affiliations

Authors

Contributions

CM contributes to the conception, acquisition, analysis, interpretation of data, and funding and wrote the manuscript. VB analyzed and interpreted the data and approved the final version of the manuscript. AC contributes to data acquisition and approved the final version of the manuscript. VV acquired the data and approved the final version of the manuscript. GMG acquired and analyzed the data and approved the final version of the manuscript. EH analyzed and interpreted the data, participated in the funding, and approved the final version of the manuscript.

Corresponding author

Correspondence to Clément Morgat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research study was conducted retrospectively from data obtained for clinical purposes. We consulted extensively with the IRB of Institut Bergonié (Breast Research Group) who determined that our study did not need ethical approval. An IRB official waiver of ethical approval was granted from the IRB of Institut Bergonié.

Informed consent

The Ethics committee of Institut Bergonié waived requirement for informed consent for the present retrospective analysis.

Cell lines

MCF-7, MDA-MB-453, MDA-MB-468, SKBR3, T47D, and ZR75.1 cell lines were obtained from Dr N. Jones (Univ. Bordeaux, France) and no additional authentication was performed by the authors of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgat, C., Brouste, V., Chastel, A. et al. Expression of neurotensin receptor-1 (NTS1) in primary breast tumors, cellular distribution, and association with clinical and biological factors. Breast Cancer Res Treat 190, 403–413 (2021). https://doi.org/10.1007/s10549-021-06402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06402-5

Keywords

Navigation