Skip to main content
Log in

Compatibility of temporary pacemaker myocardial pacing leads with magnetic resonance imaging: an ex vivo tissue study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The presence of temporary myocardial pacing leads is considered a safety contraindication for magnetic resonance imaging (MRI). The aim of this ex vivo tissue study was to measure the heating effects at the tip of the leads using proton magnetic resonance spectroscopy (1HMRS) thermometry. The tissue effects were verified by histological analyses. Pig hearts with implanted temporary pacemaker myocardial pacing leads were examined by whole-body MRI at 1.5 Tesla. The tests were performed either by a sequence with high specific absorption rate (SAR) or by standard clinical sequences with lower SAR. Temperature changes were detected via 1HMRS thermometry, by monitoring the frequency difference between water protons and the reference signals of N-methyl protons of creatine/phosphocreatine (Cr/PCr) and trimethylamine (TMA). Histology was performed using several staining techniques. Standard low-SAR and high-SAR sequences did not cause significant temperature increases in the myocardial tissue surrounding the implanted leads. There were no histopathological signs of thermal damage around the tips of the leads in any of the hearts or in a control implanted heart not subjected to MRI. The present data suggest that temporary pacemaker myocardial pacing leads may be compatible with MR scanning at 1.5 Tesla. However, further in vivo studies and carefully monitored patient studies are needed before final safety recommendations can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

1HMRS:

Proton magnetic resonance spectroscopy

Cr/PCr:

Creatine/phosphocreatine

EPI:

Echo planar imaging

FLAIR:

Fluid-attenuated inversion recovery

HLSVD:

Hankel Lanczos squares singular values decomposition

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

Ppm:

Parts per million

SAR:

Specific absorption rate

TMA:

Trimethylamine

References

  1. Newman MF, Mathew JP, Grocott HP, Mackensen GB, Monk T, Welsh-Bohmer KA, Blumenthal JA, Laskowitz DT, Mark DB (2006) Central nervous system injury associated with cardiac surgery. Lancet 368(9536):694–703

    Article  PubMed  Google Scholar 

  2. Grocott HP, Yoshitani K (2007) Neuroprotection during cardiac surgery. J Anesth 21(3):367–377

    Article  PubMed  Google Scholar 

  3. Roach GW, Kanchuger M, Mangano CM, Newman M, Nussmeier N, Wolman R, Aggarwal A, Marschall K, Graham SH, Ley C (1996) Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med 335(25):1857–1863

    Article  PubMed  CAS  Google Scholar 

  4. Levine GN, Gomes AS, Arai AE, Bluemke DA, Flamm SD, Kanal E, Manning WJ, Martin ET, Smith JM, Wilke N, Shellock FS (2007) Safety of magnetic resonance imaging in patients with cardiovascular devices: an American Heart Association scientific statement from the Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology, and the Council on Cardiovascular Radiology and Intervention: endorsed by the American College of Cardiology Foundation, the North American Society for Cardiac Imaging, and the Society for Cardiovascular Magnetic Resonance. Circulation 116(24):2878–2891

    Article  PubMed  Google Scholar 

  5. Rezai AR, Phillips M, Baker KB, Sharan AD, Nyenhuis J, Tkach J, Henderson J, Shellock FG (2004) Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol 39(5):300–303

    Article  PubMed  Google Scholar 

  6. Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232(3):635–652

    Article  PubMed  Google Scholar 

  7. Achenbach S, Moshage W, Diem B, Bieberle T, Schibgilla V, Bachmann K (1997) Effects of magnetic resonance imaging on cardiac pacemakers and electrodes. Am Heart J 134(3):467–473

    Article  PubMed  CAS  Google Scholar 

  8. Gimbel J (2001) Implantable pacemaker and defibrillator safety in the MR environment: new thoughts for the new millennium. In: Special Cross-Specialty Categorical Course in Diagnostic Radiology: Practical MR Safety Considerations for Physicians, Physicists, and Technologists. Radiological Society of North America, Oak Lawn, pp 69–76

  9. Duru F, Luechinger R, Scheidegger MB, Luscher TF, Boesiger P, Candinas R (2001) Pacing in magnetic resonance imaging environment: clinical and technical considerations on compatibility. Eur Heart J 22(2):113–124

    Article  PubMed  CAS  Google Scholar 

  10. Luechinger R, Duru F, Scheidegger MB, Boesiger P, Candinas R (2001) Force and torque effects of a 1.5-Tesla MRI scanner on cardiac pacemakers and ICDs. Pacing Clin Electrophysiol 24(2):199–205

    Article  PubMed  CAS  Google Scholar 

  11. Pavlicek W, Geisinger M, Castle L, Borkowski GP, Meaney TF, Bream BL, Gallagher JH (1983) The effects of nuclear magnetic resonance on patients with cardiac pacemakers. Radiology 147(1):149–153

    PubMed  CAS  Google Scholar 

  12. Hayes DL, Holmes DR Jr, Gray JE (1987) Effect of 1.5 tesla nuclear magnetic resonance imaging scanner on implanted permanent pacemakers. J Am Coll Cardiol 10(4):782–786

    Article  PubMed  CAS  Google Scholar 

  13. Holmes DR Jr, Hayes DL, Gray JE, Merideth J (1986) The effects of magnetic resonance imaging on implantable pulse generators. Pacing Clin Electrophysiol 9(3):360–370

    Article  PubMed  Google Scholar 

  14. Fontaine JM, Mohamed FB, Gottlieb C, Callans DJ, Marchlinski FE (1998) Rapid ventricular pacing in a pacemaker patient undergoing magnetic resonance imaging. Pacing Clin Electrophysiol 21(6):1336–1339

    Article  PubMed  CAS  Google Scholar 

  15. Fetter J, Aram G, Holmes DR Jr, Gray JE, Hayes DL (1984) The effects of nuclear magnetic resonance imagers on external and implantable pulse generators. Pacing Clin Electrophysiol 7(4):720–727

    Article  PubMed  CAS  Google Scholar 

  16. Erlebacher JA, Cahill PT, Pannizzo F, Knowles RJ (1986) Effect of magnetic resonance imaging on DDD pacemakers. Am J Cardiol 57(6):437–440

    Article  PubMed  CAS  Google Scholar 

  17. Gimbel JR, Johnson D, Levine PA, Wilkoff BL (1996) Safe performance of magnetic resonance imaging on five patients with permanent cardiac pacemakers. Pacing Clin Electrophysiol 19(6):913–919

    Article  PubMed  CAS  Google Scholar 

  18. Nitz WR, Brinker G, Diehl D, Frese G (2005) Specific absorption rate as a poor indicator of magnetic resonance-related implant heating. Invest Radiol 40(12):773–776

    Article  PubMed  Google Scholar 

  19. Shellock FG, Cosendai G, Park SM, Nyenhuis JA (2004) Implantable microstimulator: magnetic resonance safety at 1.5 Tesla. Invest Radiol 39(10):591–599

    Article  PubMed  Google Scholar 

  20. Kuroda K, Oshio K, Chung AH, Hynynen K, Jolesz FA (1997) Temperature mapping using the water proton chemical shift: a chemical shift selective phase mapping method. Magn Reson Med 38(5):845–851

    Article  PubMed  CAS  Google Scholar 

  21. Cady EB, D’Souza PC, Penrice J, Lorek A (1995) The estimation of local brain temperature by in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 33(6):862–867

    Article  PubMed  CAS  Google Scholar 

  22. Hitzig BM, Perng WC, Burt T, Okunieff P, Johnson DC (1994) 1H-NMR measurement of fractional dissociation of imidazole in intact animals. Am J Physiol 266(3 Pt 2):R1008–R1015

    PubMed  CAS  Google Scholar 

  23. MacFall JR, Prescott DM, Charles HC, Samulski TV (1996) 1H MRI phase thermometry in vivo in canine brain, muscle, and tumor tissue. Med Phys 23(10):1775–1782

    Article  PubMed  CAS  Google Scholar 

  24. van den Boogaart A, van Ormondt D, Pijnappel WW, de Beer R, Ala-Korpela M (1994) Removal of the water resonance from1H-magnetic resonance spectra. In: McWhirter JG (ed) Mathematics in signal processing III. Clarendon Press, Oxford, pp 175–195

    Google Scholar 

  25. Watts AM, Tyler MP, Perry ME, Roberts AH, McGrouther DA (2001) Burn depth and its histological measurement. Burns 27(2):154–160

    Article  PubMed  CAS  Google Scholar 

  26. Haller H (2009) Verbrennungstiefe und Ausmaß. In: Kamolz LP, Herndon DN, Jeschke MG (eds) Verbrennungen. Springer, Wien, pp 159–160

    Chapter  Google Scholar 

  27. Peters RD, Hinks RS, Henkelman RM (1998) Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magn Reson Med 40(3):454–459

    Article  PubMed  CAS  Google Scholar 

  28. Kuroda K, Mulkern RV, Oshio K, Panych LP, Nakai T, Moriya T, Okuda S, Hynynen K, Jolesz FA (2000) Temperature mapping using the water proton chemical shift: self-referenced method with echo-planar spectroscopic imaging. Magn Reson Med 43(2):220–225

    Article  PubMed  CAS  Google Scholar 

  29. Zhu M, Bashir A, Ackerman JJ, Yablonskiy DA (2008) Improved calibration technique for in vivo proton MRS thermometry for brain temperature measurement. Magn Reson Med 60(3):536–541

    Article  PubMed  CAS  Google Scholar 

  30. Mulkern RV, Chung AH, Jolesz FA, Hynynen K (1997) Temperature monitoring of ultrasonically heated muscle with RARE chemical shift imaging. Med Phys 24(12):1899–1906

    Article  PubMed  CAS  Google Scholar 

  31. Kuroda K, Suzuki Y, Ishihara Y, Okamoto K (1996) Temperature mapping using water proton chemical shift obtained with 3D-MRSI: feasibility in vivo. Magn Reson Med 35(1):20–29

    Article  PubMed  CAS  Google Scholar 

  32. Sommer T, Vahlhaus C, Lauck G, von Smekal A, Reinke M, Hofer U, Block W, Traber F, Schneider C, Gieseke J, Jung W, Schild H (2000) MR imaging and cardiac pacemakers: in vitro evaluation and in vivo studies in 51 patients at 0.5 T. Radiology 215(3):869–879

    PubMed  CAS  Google Scholar 

  33. Shellock FG, Shellock VJ (1998) Cardiovascular catheters and accessories: ex vivo testing of ferromagnetism, heating, and artifacts associated with MRI. J Magn Reson Imaging 8(6):1338–1342

    Article  PubMed  CAS  Google Scholar 

  34. Finelli DA, Rezai AR, Ruggieri PM, Tkach JA, Nyenhuis JA, Hrdlicka G, Sharan A, Gonzalez-Martinez J, Stypulkowski PH, Shellock FG (2002) MR imaging-related heating of deep brain stimulation electrodes: in vitro study. AJNR Am J Neuroradiol 23(10):1795–1802

    PubMed  Google Scholar 

  35. Mattei E, Triventi M, Calcagnini G, Censi F, Kainz W, Mendoza G, Bassen HI, Bartolini P (2008) Complexity of MRI induced heating on metallic leads: experimental measurements of 374 configurations. Biomed Eng Online 7:11

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Nicola M. Osypka (managing and sales director, Dr. Osypka GmbH, Germany) for the use of the temporary pacemaker myocardial pacing leads; Rüdiger Vollandt, PhD, for statistical advice; and Dr. Ernesta Palombo-Kinne for critical revision of the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Pfeil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeil, A., Drobnik, S., Rzanny, R. et al. Compatibility of temporary pacemaker myocardial pacing leads with magnetic resonance imaging: an ex vivo tissue study. Int J Cardiovasc Imaging 28, 317–326 (2012). https://doi.org/10.1007/s10554-011-9800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9800-y

Keywords

Navigation