Skip to main content

Advertisement

Log in

In vitro and in vivo evaluation of xenogeneic bone putty with the carrier of hydrogel derived from demineralized bone matrix

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The demineralized bone matrix (DBM) putty is a traditional bone graft utilized to facilitate the repair and reconstruction of bone. Recent studies indicated the DBM putties with the various carriers were different in bone repairing ability. In order to prepare a kind of DBM putty with a good biocompatibility and bioactivity, the DBM gel was processed from the DBM and the feasibility as a carrier for the DBM putty was evaluated. After the bovine DBM gel was prepared, the BMPs content as well as the ability to promote osteogenic differentiation of MC3T3-E1 cells in vitro were investigated. Then the DBM putty was prepared and filled into the rat calvarial defect model to evaluate the bone repairing ability by micro-CT and histology. The result showed there was 2.953 ± 0.054 ng BMP contained in per gram of the DBM gel. And the ALP production of MC3T3-E1 cells in the DBM gels group increased with prolonged culturing, the mineralized nodules formed in MC3T3-E1 cells on 14th day after co-culture. The putty prepared by DBM gel was easy to handle without loss of DBM particles at room temperature. In the rat calvarial bone defect experiment, histological observation showed more mature bone formed in the DBM putty group than that in the type I collagen group at 12 weeks, which indicated the bone putty prepared by DBM gel exhibited a better bone repair capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acarturk TO, Hollinger JO (2006) Commercially available demineralized bone matrix compositions to regenerate calvarial critical-sized bone defects. Plast Reconstr Surg 118(4):862–873

    Article  CAS  PubMed  Google Scholar 

  • Accorsi-Mendonca T, Conz MB, Barros TC, de Sena LA, Soares Gde A, Granjeiro JM (2008) Physicochemical characterization of two deproteinized bovine xenografts. Braz Oral Res 22(1):5–10

    Article  PubMed  Google Scholar 

  • Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee H, Miao S, Hong N, Kuroda S, Wu B, Ting K, Soo C (2006) Nell-1-induced bone regeneration in calvarial defects. Am J Pathol 169(3):903–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aghaloo T, Cowan CM, Zhang X, Freymiller E, Soo C, Wu B, Ting K, Zhang Z (2010) The effect of NELL1 and bone morphogenetic protein-2 on calvarial bone regeneration. J Oral Maxillofac Surg 68(2):300–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Alom N, Peto H, Kirkham GR, Shakesheff KM, White LJ (2018) Bone extracellular matrix hydrogel enhances osteogenic differentiation of C2C12 myoblasts and mouse primary calvarial cells. J Biomed Mater Res B Appl Biomater 106(2):900–908

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB (2010) Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg Am 92(2):427–435

    Article  PubMed  Google Scholar 

  • Banjar AA, Mealey BL (2013) A clinical investigation of demineralized bone matrix putty for treatment of periodontal bony defects in humans. Int J Periodontics Restor Dent 33(5):567–573

    Article  Google Scholar 

  • Barbieri D, Yuan H, de Groot F, Walsh WR, de Bruijn JD (2011) Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic. Acta Biomater 7(5):2007–2014

    Article  CAS  PubMed  Google Scholar 

  • Bodakhe S, Verma S, Garkhal K, Samal SK, Sharma SS, Kumar N (2013) Injectable photocrosslinkable nanocomposite based on poly(glycerol sebacate) fumarate and hydroxyapatite: development, biocompatibility and bone regeneration in a rat calvarial bone defect model. Nanomedicine (Lond) 8(11):1777–1795

    Article  CAS  Google Scholar 

  • Borah B, Dufresne TE, Cockman MD, Gross GJ, Sod EW, Myers WR, Combs KS, Higgins RE, Pierce SA, Stevens ML (2000) Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling. J Bone Miner Res 15(9):1786–1797

    Article  CAS  PubMed  Google Scholar 

  • Choi MY, Kim JT, Lee WJ, Lee Y, Park KM, Yang YI, Park KD (2017) Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells. Acta Biomater 50:234–248

    Article  CAS  PubMed  Google Scholar 

  • Dallari D, Savarino L, Albisinni U, Fornasari P, Ferruzzi A, Baldini N, Giannini S (2012) A prospective, randomised, controlled trial using a Mg-hydroxyapatite-demineralized bone matrix nanocomposite in tibial osteotomy. Biomaterials 33(1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Dozza B, Lesci IG, Duchi S, Della Bella E, Martini L, Salamanna F, Falconi M, Cinotti S, Fini M, Lucarelli E, Donati D (2017) When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential. J Biomed Mater Res A 105(4):1019–1033

    Article  CAS  PubMed  Google Scholar 

  • Gasimli L, Linhardt RJ, Dordick JS (2012) Proteoglycans in stem cells. Biotechnol Appl Biochem 59(2):65–76

    Article  CAS  PubMed  Google Scholar 

  • Gothard D, Smith EL, Kanczler JM, Black CR, Wells JA, Roberts CA, White LJ, Qutachi O, Peto H, Rashidi H, Rojo L, Stevens MM, Haj EI, Rose FRAJ, Shakesheff KM, Oreffo RO (2015) In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS ONE 10(12):e0145080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO (2012) Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev 64(12):1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Han B, Tang B, Nimni ME (2003) Combined effects of phosphatidylcholine and demineralized bone matrix on bone induction. Connect Tissue Res 44(3–4):160–166

    Article  CAS  PubMed  Google Scholar 

  • Hatzokos I, Stavridis SI, Iosifidou E, Karataglis D, Christodoulou A (2011) Autologous bone marrow grafting combined with demineralized bone matrix improves consolidation of docking site after distraction osteogenesis. J Bone Joint Surg Am 93(7):671–678

    Article  PubMed  Google Scholar 

  • Hong Y, Huber A, Takanari K, Amoroso NJ, Hashizume R, Badylak SF, Wagner WR (2011) Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials 32(13):3387–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvathy DB, Vacz G, Toro I, Szabo T, May Z, Duarte M, Hornyak I, Szabo BT, Dobo-Nagy C, Doros A, Lacza Z (2016) Remineralization of demineralized bone matrix in critical size cranial defects in rats: a 6-month follow-up study. J Biomed Mater Res B Appl Biomater 104(7):1336–1342

    Article  CAS  PubMed  Google Scholar 

  • Inoda H, Yamamoto G, Hattori T (2004) Histological investigation of osteoinductive properties of rh-BMP2 in a rat calvarial bone defect model. J Craniomaxillofac Surg 32(6):365–369

    Article  PubMed  Google Scholar 

  • Irinakis T (2011) Efficacy of injectable demineralized bone matrix as graft material during sinus elevation surgery with simultaneous implant placement in the posterior maxilla: clinical evaluation of 49 sinuses. J Oral Maxillofac Surg 69(1):134–141

    Article  PubMed  Google Scholar 

  • Kainer MA, Linden JV, Whaley DN, Holmes HT, Jarvis WR, Jernigan DB, Archibald LK (2004) Clostridium infections associated with musculoskeletal-tissue allografts. N Engl J Med 350(25):2564–2571

    Article  CAS  PubMed  Google Scholar 

  • Kim DM, Nevins M, Camelo M, Schupbach P, Kim SW, Camelo JM, Al Hezaimi K, Nevins ML (2011) The feasibility of demineralized bone matrix and cancellous bone chips in conjunction with an extracellular matrix membrane for alveolar ridge preservation: a case series. Int J Periodontics Restor Dent 31(1):39–47

    CAS  Google Scholar 

  • Kisiel M, Klar AS, Ventura M, Buijs J, Mafina MK, Cool SM, Hilborn J (2013) Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation. PLoS ONE 8(10):e78551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long B, Dan L, Jian L, Yunyu H, Shu H, Zhi Y (2012) Evaluation of a novel reconstituted bone xenograft using processed bovine cancellous bone in combination with purified bovine bone morphogenetic protein. Xenotransplantation 19(2):122–132

    Article  PubMed  Google Scholar 

  • Martinez-Sanz E, Ossipov DA, Hilborn J, Larsson S, Jonsson KB, Varghese OP (2011) Bone reservoir: injectable hyaluronic acid hydrogel for minimal invasive bone augmentation. J Control Release 152(2):232–240

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Floerkemeier T, Windhagen H (2008) Histological osseointegration of tutobone: first results in human. Arch Orthop Trauma Surg 128(6):539–544

    Article  PubMed  Google Scholar 

  • Minardi S, Corradetti B, Taraballi F, Sandri M, Van Eps J, Cabrera FJ, Weiner BK, Tampieri A, Tasciotti E (2015) Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 62:128–137

    Article  CAS  PubMed  Google Scholar 

  • Murray T, Morscher MA, Krahe AM, Adamczyk MJ, Weiner DS (2016) Fibular allograft and demineralized bone matrix for the treatment of slipped capital femoral epiphysis. Orthopedics 39(3):e519–e525

    Article  PubMed  Google Scholar 

  • O’leary RK, Prewett AB (1993) Osteogenic composition and implant containing same. United States, Patent and Trademark Office

  • O’leary RK, Prewett AB (1995) Osteogenic composition and implant containing same. United States, Patent and Trademark Office

  • Peker E, Karaca IR, Yildirim B (2016) Experimental evaluation of the effectiveness of demineralized bone matrix and collagenated heterologous bone grafts used alone or in combination with platelet-rich fibrin on bone healing in sinus floor augmentation. Int J Oral Maxillofac Implants 31(2):e24–e31

    Article  PubMed  Google Scholar 

  • Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR (2004) Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am 86-A(10):2243–2250

    Article  PubMed  Google Scholar 

  • Pietrzak WS, Dow M, Gomez J, Soulvie M, Tsiagalis G (2012) The in vitro elution of BMP-7 from demineralized bone matrix. Cell Tissue Bank 13(4):653–661

    Article  CAS  PubMed  Google Scholar 

  • Sawkins MJ, Bowen W, Dhadda P, Markides H, Sidney LE, Taylor AJ, Rose FR, Badylak SF, Shakesheff KM, White LJ (2013) Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9(8):7865–7873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schallenberger MA, Rossmeier K, Lovick HM, Meyer TR, Aberman HM, Juda GA (2014) Comparison of the osteogenic potential of OsteoSelect demineralized bone matrix putty to NovaBone calcium-phosphosilicate synthetic putty in a cranial defect model. J Craniofac Surg 25(2):657–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz Z, Hyzy SL, Moore MA, Hunter SA, Ronholdt CJ, Sunwoo M, Boyan BD (2011) Osteoinductivity of demineralized bone matrix is independent of donor bisphosphonate use. J Bone Joint Surg Am 93(24):2278–2286

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavakol S, Khoshzaban A, Azami M, Kashani IR, Tavakol H, Yazdanifar M, Sorkhabadi SM (2013) The effect of carrier type on bone regeneration of demineralized bone matrix in vivo. J Craniofac Surg 24(6):2135–2140

    Article  PubMed  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150(3698):893–899

    Article  CAS  PubMed  Google Scholar 

  • Urist MR, Mikulski AJ (1979) A soluble bone morphogenetic protein extracted from bone matrix with a mixed aqueous and nonaqueous solvent. Proc Soc Exp Biol Med 162(1):48–53

    Article  CAS  PubMed  Google Scholar 

  • Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50(6):1392–1406

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Ur Rehman F, Zhao C, Liu B, He N (2016) Recent advances in nano scaffolds for bone repair. Bone Res 13(4):16050

    Article  CAS  Google Scholar 

  • Zhang N, Zhou M, Zhang Y, Wang X, Ma S, Dong L, Yang T, Ma L, Li B (2014) Porcine bone grafts defatted by lipase: efficacy of defatting and assessment of cytocompatibility. Cell Tissue Bank 15(3):357–367

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang J, Ma Y, Niu X, Liu J, Gao L, Zhai X, Chu K, Han B, Yang L, Wang J (2017) Preparation and biocompatibility of demineralized bone matrix/sodium alginate putty. Cell Tissue Bank 18:205–216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the research funding from Natural Science Foundation of Shandong Province (Nos. BS2015SW021; ZR2014HM009; ZR2016HP13), the Project of Science and Technology of Binzhou Medical University (Nos. BY2014KYQD25; BY2014KJ08), the National Natural Science Foundation of China (No. 81301570), and The development of medical science and technology project of Shandong Province (No. 2013WS0306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Huang.

Ethics declarations

Conflict of interest

We declare that we have no conflicts of interest to this work, and have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Ma, L., Liu, X. et al. In vitro and in vivo evaluation of xenogeneic bone putty with the carrier of hydrogel derived from demineralized bone matrix. Cell Tissue Bank 19, 591–601 (2018). https://doi.org/10.1007/s10561-018-9708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-018-9708-z

Keywords

Navigation