Skip to main content

Advertisement

Log in

Preferential localization of γH2AX foci in euchromatin of retina rod cells after DNA damage induction

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

DNA damage may lead to cell transformation, senescence, or death. Histone H2AX phosphorylation, immunodetected as γH2AX foci, is an early response to DNA damage persisting even after DNA repair. In cycling mammalian cells with canonical nuclear architecture, i.e., central euchromatin and peripheral heterochromatin, γH2AX foci map preferentially to euchromatin. Mice retina rods are G0 cells displaying an inverted nuclear architecture 28 days after birth (P28). Rod nuclei exhibit one or two central constitutive heterochromatin chromocenters encircled by facultative heterochromatin. Euchromatin resides at the nuclear periphery, extending to the equator in cells with two chromocenters. To assess the impact of chromatin relocation in the localization of DNA damage, γH2AX and TUNEL foci induced ex vivo by radiomimetic bleomycin were mapped in H3K4me3 immunolabeled P28 rod nuclei. A preferential localization of γH2AX foci in euchromatin was detected together with foci clustering. Besides, a decay of H3K4me3 signal at γH2AX foci sites was observed. TUNEL and γH2AX foci exhibited similar localization patterns in BLM-treated rod cells thus excluding curtailed access of anti-γH2AX antibodies to heterochromatin. Lack of γH2AX foci in rod chromocenters appears to be unrelated to the occurrence of mid-range foci movements. Foci clusters may arise through DNA double-strand break proximity, local non-directional chromatin movements or chromatin relaxation. H3K4me3 signal reduction at γH2AX foci could stem from local chromatin decondensation or downregulation of histone H4 methylation. The observed topology of DNA damage in retina-differentiated rods indicates that euchromatin is damage-prone, regardless of the canonical or inverted nuclear architecture of mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

γH2AX:

Histone H2AX phosphorylated on serine 139

APP:

Amyloid precursor protein

ATM:

Ataxia Telangiectasia Mutated

ATR:

Ataxia Telangiectasia Related

BLM:

Bleomycin

CA:

Chromosomal aberrations

DNA-PK:

DNA-dependent Protein Kinase

DSB:

DNA double-strand break

E-64:

trans-Epoxysuccinyl-l-leucylamido-(4-guanidino) butane

EDDI:

Euchromatic damage distribution index

GCL:

Retina ganglion cell layer

H3K4me3:

Histone H3 trimethylated on lysine 4

INL:

Retina inner nuclear layer

LM/ESI:

Correlative light microscopy and electron spectroscopic imaging

MHC I:

Major histocompatibility complex

NPHR:

Non-photoreceptor cells

ONL:

Retina outer nuclear layer

P28:

Twenty-eight days after birth

PHR:

Photoreceptor cells

RIDGES:

Regions of increased gene expression

ROI:

Region of interest

SSB:

DNA single-strand break

Tdt:

Terminal deoxynucleotidyl-transferase

TSS:

Transcriptional start site

TUNEL:

Terminal deoxynucleotidyl-transferase dUTP nick end labeling

UV-C:

Ultraviolet light

References

  • Anderson D, Basaran N, Blowers SD, Edwards AJ (1995) The effect of antioxidants on bleomycin treatment in in vitro and in vivo genotoxicity assays. Mutat Res 329(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Baleriola J, Suárez T, de la Rosa EJ (2010) DNA-PK promotes the survival of young neurons in the embryonic mouse retina. Cell Death Diff 17:1697–1706

    Article  CAS  Google Scholar 

  • Barrios L, Miró R, Caballín MR, Fuster C, Guedea F, Subias A, Egozcue J (1989) Cytogenetic effects of radiotherapy breakpoint distribution in induced chromosome aberrations. Cancer Genet Cytogenet 41:61–70

    Article  CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh T, Schones D, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  • Bolzán AD, Páez GL, Bianchi MS (2001) FISH analysis of telomeric reoeat sequences and their involvement in chromosomal aberrations induced by radiomimetic compounds in hamster cells. Mutat Res 479:187–196

    Article  PubMed  Google Scholar 

  • Borges HL, Linden R (1999) Gamma irradiation leds to two waves of apoptosis in distinct cell populations of the retina of newborn rats. J Cell Sci 112:4315–4324

    CAS  PubMed  Google Scholar 

  • Borges HL, Chao C, Xu Y, Linden R, Wang JYJ (2004) Radiation-induced apoptosis in developing mouse retina exhibits dose-dependent requirement for ATM phosphorylation of p53. Cell Death Diff 11:494–502

    Article  CAS  Google Scholar 

  • Chen J, Stubbe J (2005) Bleomycins: towards better therapeutics. Nature Rev 5:102–112

    CAS  Google Scholar 

  • Chen J, Ghorai MK, Kenney G (2008) Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage. Nucleic Acids Res 36(11):3781–3790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cherry TJ, Wang S, Bormuth I, Schwab M, Olson J, Cepko CL (2011) NeuroD factors regulate cell fate and neurite stratification in the developing retina. J Neurosci 31(20):7365–7379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B (2010) Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutat Res 704(1–3):78–87

    Article  CAS  PubMed  Google Scholar 

  • Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ (2007) GammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One 2(10):e1057. doi:10.1371/journal.pone.0001057

    Article  PubMed Central  PubMed  Google Scholar 

  • Cremer T, Cremer M (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev 2:292–301

    Article  CAS  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a003889

    Article  PubMed  Google Scholar 

  • d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA damage response. Nature Rev Cancer 8:512–522. doi:10.1038/nrc2440

    Article  Google Scholar 

  • D’Andrea AD, Haseltine WA (1998) Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. Proc Natl Acad Sci U S A 75:3608–3612

    Article  Google Scholar 

  • De Braekeleer M (1987) Fragile sites and chromosomal structural rearrangements in human leukemia and cancer. Anticancer Res 7:417–422

    PubMed  Google Scholar 

  • Dellaire G, Kepkay R, Bazett-Jones DP (2009) High resolution imaging of changes in the structure and spatial organization of chromatin, γ-H2A.X and the MRN complex within etoposide induced DNA repair foci. Cell Cycle 8:3750–3769

    Article  CAS  PubMed  Google Scholar 

  • Demarchi F, Cataldo F, Bertoli C, Schneider C (2010) DNA damage links calpain to cellular senescence. Cell Cycle 9(4):755–760

    Article  CAS  PubMed  Google Scholar 

  • Di Tomaso MV, Martínez-López W, Folle GA, Palitti F (2006) Modulation of chromosome damage localization by DNA replication timing. Int J Radiat Biol 82:877–886

    Article  PubMed  Google Scholar 

  • Di Tomaso MV, Martínez-López W, Méndez-Acuña L, Lafon-Hughes L, Folle GA (2008) Factors leading to the induction and conversion of DNA damage into structural chromosomal aberrations. In: Miura S, Nakano S (eds) Progress in DNA Damage Research. Nova Publisher, New York, pp 30–40

    Google Scholar 

  • Di Tomaso MV, Martínez-López W, Palitti F (2010) Asynchronously replicating eu/heterochromatic regions shape chromosome damage. Cytogenet Genome Res 128(1–3):111–117

    Article  PubMed  Google Scholar 

  • Dimitri P, Caizzi R, Giordano E, Accardo MC, Lattanzi G, Biamonti G (2009) Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma 118:419–435

    Article  CAS  PubMed  Google Scholar 

  • Dyer MA, Cepko CL (2000) Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci 3(9):873–880

    Article  CAS  PubMed  Google Scholar 

  • Falk M, Lukasova E, Kozubek S (2010) Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat Res Rev 704:88–100

    Article  CAS  Google Scholar 

  • Folle GA (2008) Nuclear architecture, chromosome domains and genetic damage. Mutat Res Rev 658:172–183

    Article  CAS  Google Scholar 

  • Folle GA, Obe G (1995) Localization of chromosome breakpoints induced by AluI and BamHI in Chinese hamster ovary (CHO) cells treated in the G1 phase of the cell cycle. Int J Rad Biol 68:437–445

    Article  CAS  PubMed  Google Scholar 

  • Folle GA, Martínez-López W, Boccardo E, Obe G (1998) Localization of chromosome breakpoints: implication of the chromatin structure and nuclear architecture. Mutat Res 404(1–2):17–26

    Article  CAS  PubMed  Google Scholar 

  • Folle GA, Liddle P, Lafon-Hughes L, Di Tomaso M (2010) Close encounters: RIDGEs, hyperacetylated chromatin, radiation breakpoints and genes differentially expressed in tumors cluster at specific human chromosome regions. Cytogenet Genome Res 128:17–27

    Article  CAS  PubMed  Google Scholar 

  • Gazave E, Gautier P, Gilchrist S, Bickmore WA (2005) Does radial nuclear organisation infuence DNA damage? Chromosom Res 13:377–388

    Article  CAS  Google Scholar 

  • Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118:555–566

    Article  CAS  PubMed  Google Scholar 

  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177

    Article  CAS  PubMed  Google Scholar 

  • Hecht F (1988) Fragile sites, cancer chromosome breakpoints and oncogenes all cluster in light G bands. Cancer Genet Cytogenet 31:17–24

    Article  CAS  PubMed  Google Scholar 

  • Ichijima Y, Sakasai R, Okita N, Ashina K, Mizutani S, Teraoka H (2005) Phosphorylation of histone H2AX at M phase in human cells without DNA damage response. Biochem Biophys Res Comm 336:807–812

    Article  CAS  PubMed  Google Scholar 

  • Jakob B, Splinter J, Durante M, Taucher-Scholz G (2009) Live cell microscopy analysis of radiation-induced DNA double-strand break motion. PNAS 106(9):3172–3177

    Article  CAS  PubMed  Google Scholar 

  • Jakob B, Splinter J, Conrad S, Voss KO, Zink D, Durante M, Löbrich M, Taucher-Scholz G (2011) DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res 39(15):6489–6499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kato TA, Okayasu R, Bedford JS (2008) Comparison of the induction and disappearance of DNA double strand breaks and γH2AX foci after irradiation of chromosomes in G1-phase or in condensed metaphase cells. Mutat Res 639:108–112

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE (2007) Heterochromatin is refractory to γ-H2AX modification in yeast and mammals. J Cell Biol 178(29):209–218

    Article  CAS  PubMed  Google Scholar 

  • Kinner A, Wu W, Staudt C, Illiakis G (2008) γH2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36(17):5678–5694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Muller WG et al (2006) Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 172:823–834

    Article  CAS  PubMed  Google Scholar 

  • Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS, Mazhar A, Kasif S, Ptaszek LM, Cowan CA, Lander ES, Koseki H, Bernstein BE (2008) Genome-wide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PloS Genet 4(10):e1000242. doi:10.1371/journal.pgen.1000242

    Article  PubMed Central  PubMed  Google Scholar 

  • Leemput J, Masson C, Bigot K, Errachid A, Dansault A (2009) ATM localization and gene expression in the adult mouse eye. Mol Vision 15:393–416

    CAS  Google Scholar 

  • Margolin Y, Shafirovich V, Geacintov NE, DeMott MS, Dedon PC (2008) DNA Sequence Context as a Determinant of the Quantity and Chemistry of Guanine Oxidation Produced by Hydroxyl Radicals and One-electron Oxidants. J Biol Chem 283:35569–35578

    Article  CAS  PubMed  Google Scholar 

  • Martínez-López W, Folle GA, Cassina G, Méndez-Acuña L, Di Tomaso MV, Obe G, Palitti F (2004) Distribution of breakpoints induced by etoposide and X-rays along the CHO X chromosome. Cytogenetic Genome Res 104:182–187

    Article  Google Scholar 

  • Mc Manus KJ, Hendzel MJ (2005) ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol Biol Cell 16:5013–5025

    Article  CAS  Google Scholar 

  • Montoya SE (2004) Evaluation of the physiological functions of bleomycin hydrolase in the murine CNS. PhD thesis, University of Pittsburgh

  • Obe G, Johannes C, Schulte-Frohlinde D (1992) DNA double-strand breaks induced by sparsely ionizing radiation and endonucleases as critical lesions for cell death, chromosomal aberrations, mutations and oncogenic transformation. Mutagenesis 7:3–12

    Article  CAS  PubMed  Google Scholar 

  • Obe G, Pfeiffer P, Savage JRK, Johannes C, Goedecke W, Jeppesen P, Natarajan AT, Martínez-López W, Folle GA, Drets ME (2002) Chromosomal aberrations: formation, identification and distribution. Mutat Res 504:17–36

    Article  CAS  PubMed  Google Scholar 

  • Okamura H, Yoshida K, Amorim BR, Haneji T (2008) Histone H1.2 is translocated to mitocondria and associates with Bak in bleomycin-induced apoptotic cells. J Cell Biochem 103:1488–1496

    Article  CAS  PubMed  Google Scholar 

  • Pelzel HR, Schlamp CL, Nickels RW (2010) Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci 11:62–82. doi:10.1186/1471-2202-11-62

    Article  PubMed Central  PubMed  Google Scholar 

  • Pietruska JR, Kane AB (2007) SV40 oncoproteins enhance asbestos-induced DNA double-strand breaks and abrogate senescence in murine mesothelial cells. Cancer Res 67(8):3637–3645

    Article  CAS  PubMed  Google Scholar 

  • Popova EY, Xu X, DeWan AT, Salzberg AC, Berg A, Hoh J, Zhang SS, Barnstable CJ (2012) Stage and Gene Specific Signatures Defined by Histones H3K27me3 Accompany Mammalian Retina Maturation In Vivo. PLoS ONE 7(10):e46867. doi:10.1371/jounal.pone.0046867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Ort AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  • Sasaki YF, Nishidate E, Izumiyama F, Matsusaka N, Tsuda S (1997) Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow). Mutat Res 391(3):215–231

    Article  CAS  PubMed  Google Scholar 

  • Seiler DM, Rouquette J, Schmid VJ, Strickfaden H, Ottman C, Drexler GA, Mazurek B, Greubel C, Hable V, Dollinger G, Cremer T, Friedl AA (2011) Double-strand break-induced transcriptional silencing is associated with loss of tri-methylation at H3K4. Chromosom Res 19:883–899

    Article  CAS  Google Scholar 

  • Slijepcevic P, Bryant PE (1998) Chromosome healing, telomere capture and mechanisms of radiation-induced chromosome breakage. Int J Radiat Biol 73:1–13

    Article  CAS  PubMed  Google Scholar 

  • Solovei I, Kreysing M, Lanctot C, Kösem S, Peichi L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356–368

    Article  CAS  PubMed  Google Scholar 

  • Szumiel I (2007) Analysis of DNA double-strand breaks by means of γH2AX foci. Chromosomal Alterations 145-160

  • Takeda A, Higuchi D, Yamamoto T, Nakamura Y, Masuda Y, Hirabashi T, Nakaya K (1996) Purification and characterization of bleomycin hydrolase, which represents a new family of cysteine proteases, from rat skin. J Biochem 119:29–36

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi B, Porfirio B, Caporossi D, Vernole P, Nicoletti B (1991) Structural chromosomal rearrangements in HpaII-treated human lymphocytes. Mutat Res 248:115–121

    Article  CAS  PubMed  Google Scholar 

  • Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276:47759–47762

    Article  CAS  PubMed  Google Scholar 

  • White D, Rafalska-Metcalf IU, Ivanov AV, Corsinotti A, Peng H, Lee SC, Trono D, Janicki SM, Rauscher FJ 3rd (2012) The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol Cancer Res 10:401–414

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara JC, Wakimoto BT (2006) Oxymoron no more: the expanding world of heterochromatic genes. Trends Genet 22(6):330–338

    Article  CAS  PubMed  Google Scholar 

  • Yunis JJ, Soreng AL, Bowe AE (1987) Fragile sites are target of diverse mutagens and carcinogens. Oncogene 1:59–69

    CAS  PubMed  Google Scholar 

  • Zheng W, Johnston SA (1998) The nucleic acid binding activity of bleomycin hydrolase is involved in bleomycin detoxification. Mol Cell Biol 18:3580–3585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, Lukas J, Bekker-Jensen S, Bartek J, Shiloh Y (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8:870–876

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Omar Trujillo for technical advice regarding retina dissection and to Thomas and Marion Cremer and Ricardo Benavente for helpful suggestions on the manuscript. We also wish to thank Cristina Arrutti for stimulating discussions. The work was financed in part by the Programa de Desarrollo en Ciencias Básicas (PEDECIBA, Uruguay) and the Agencia Nacional de Investigación e Innovación (ANII).

Conflict of interest

Laura Lafon-Hughes, María Vittoria Di Tomaso, Pablo Liddle, Andrea Toledo, Ana Laura Reyes-Ábalos, and Gustavo A. Folle declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Lafon-Hughes.

Additional information

Responsible Editor: Dean A. Jackson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Comparison of CHO-AA8 and mice retina sensitivity to BLM (160). AA8 and retinas were treated in parallel with 160 μM BLM for 1 h. Then, they were fixed in 4 % PFA, immunolabelled for γH2AX (red) and counterstained with DAPI (blue). Left: CHO cells; right: mice retina. Confocal images (×40). Bars 10 μm and 5 μm, respectively. (JPEG 67 kb)

High resolution image (TIFF 2508 kb)

Supplementary Figure 2

(A) Retina outer nuclear layer (ONL) overview. Absent or extremely rare H2AX phosphorylation is observed, except in cotreated (E64 + BLM) retinas. γH2AX (red) and DAPI (blue) signals are shown. Bar 5 μm. (B) Image gallery: preliminary analysis of γH2AX foci distribution in rare γH2AX + photoreceptors detected in different mice and BLM treatments. Green: γH2AX mask. A red mask representative of heterochromatin was created by thresholding DAPI channel images. Besides, DAPI channel was saturated to permit a better visualization of euchromatin. The resulting merged image allows a rough visualization of central constitutive heterochromatin (pink), facultative heterochromatin (red), and euchromatin (blue). CHc constitutive heterochromatin, FHc facultative heterochromatin, Ec euchromatin. Bar 5 μm. (JPEG 142 kb)

High resolution image (TIFF 3779 kb)

Supplementary Figure 3

Confocal images of 10 μM E-64-treated and 10 μM E-64 (4 h) + 80 μM BLM (3 h)-treated retinas ONL. γH2AX foci (red), H3K4me3 (green), and DAPI (blue) signals are depicted. DNA damage is evident in the BLM-treated retina. Bar 5 μm. (JPEG 108 kb)

High resolution image (TIFF 3311 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafon-Hughes, L., Di Tomaso, M.V., Liddle, P. et al. Preferential localization of γH2AX foci in euchromatin of retina rod cells after DNA damage induction. Chromosome Res 21, 789–803 (2013). https://doi.org/10.1007/s10577-013-9395-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-013-9395-3

Keywords

Navigation