Skip to main content

Advertisement

Log in

Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Increased bone marrow adiposity is a common feature of advanced age, obesity and associated metabolic pathologies. Augmented numbers of marrow adipocytes positively correlate with dysregulated bone remodeling, also a well-established complication of metastatic disease. We have shown previously that marrow adiposity accelerates prostate tumor progression in the skeleton and promotes extensive destruction of the bone; however, the factors behind adipocyte-driven osteolysis in the skeletal tumor microenvironment are not currently known. In this study, utilizing in vivo diet-induced models of bone marrow adiposity, we reveal evidence for positive correlation between increased marrow fat content, bone degradation by ARCaP(M) and PC3 prostate tumors, and augmented levels of host-derived CXCL1 and CXCL2, ligands of CXCR2 receptor. We show by in vitro osteoclastogenesis assays that media conditioned by bone marrow adipocytes is a significant source of CXCL1 and CXCL2 proteins. We also demonstrate that both the adipocyte-conditioned media and the recombinant CXCL1 and CXCL2 ligands efficiently accelerate osteoclast maturation, a process that can be blocked by neutralizing antibodies to each of the chemokines. We further confirm the contribution of CXCR2 signaling axis to adiposity-driven osteoclastogenesis by blocking fat cell-induced osteoclast differentiation with CXCR2 antagonist or neutralizing antibodies. Together, our results link CXCL1 and CXCL2 chemokines with bone marrow adiposity and implicate CXCR2 signaling in promoting effects of marrow fat on progression of skeletal tumors in bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I (2014) Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev 33(2–3):527–543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285(33):25103–25108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lecka-Czernik B, Rosen CJ, Kawai M (2010) Skeletal aging and the adipocyte program: new insights from an “old” molecule. Cell Cycle 9(18):3648–3654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19(2):109–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract 2(1):35–43

    Article  CAS  Google Scholar 

  6. Dimitroulas T, Nikas SN, Trontzas P, Kitas GD (2013) Biologic therapies and systemic bone loss in rheumatoid arthritis. Autoimmun Rev 12(10):958–966

    Article  CAS  PubMed  Google Scholar 

  7. Ara T, Declerck YA (2010) Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 46(7):1223–1231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lecka-Czernik B (2011) Marrow fat metabolism is linked to the systemic energy metabolism. Bone 50(2):534–539

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gimble JM, Nuttall ME (2004) Bone and fat: old questions, new insights. Endocrine 23(2–3):183–188

    Article  CAS  PubMed  Google Scholar 

  10. Kawai M, de Paula FJ, Rosen CJ (2012) New insights into osteoporosis: the bone-fat connection. J Intern Med 272(4):317–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cao JJ, Sun L, Gao H (2010) Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann N Y Acad Sci 1192:292–297

    Article  CAS  PubMed  Google Scholar 

  12. Halade GV, Rahman MM, Williams PJ, Fernandes G (2010) High fat diet-induced animal model of age-associated obesity and osteoporosis. J Nutr Biochem 21(12):1162–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jilka RL (2002) Osteoblast progenitor fate and age-related bone loss. J Musculoskelet Neuronal Interactions 2(6):581–583

    CAS  Google Scholar 

  14. Oh SR, Sul OJ, Kim YY, Kim HJ, Yu R, Suh JH, Choi HS (2010) Saturated fatty acids enhance osteoclast survival. J Lipid Res 51(5):892–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lecka-Czernik B (2010) PPARs in bone: the role in bone cell differentiation and regulation of energy metabolism. Curr Osteoporos Rep 8(2):84–90

    Article  PubMed  Google Scholar 

  16. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF- beta/BMP signaling pathways. Aging Cell 3(6):379–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cao JJ, Gregoire BR, Gao H (2009) High-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice. Bone 44(6):1097–1104

    Article  CAS  PubMed  Google Scholar 

  18. Halade GV, El Jamali A, Williams PJ, Fajardo RJ, Fernandes G (2011) Obesity-mediated inflammatory microenvironment stimulates osteoclastogenesis and bone loss in mice. Exp Gerontol 46(1):43–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kyung TW, Lee JE, Phan TV, Yu R, Choi HS (2009) Osteoclastogenesis by bone marrow-derived macrophages is enhanced in obese mice. J Nutr 139(3):502–506

    Article  CAS  PubMed  Google Scholar 

  20. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A, Feldmann D, Podgorski I (2013) Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget 4(11):2108–2123

    PubMed Central  PubMed  Google Scholar 

  21. Brown MD, Hart CA, Gazi E, Bagley S, Clarke NW (2006) Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs. Br J Cancer 94(6):842–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Brown MD, Hart C, Gazi E, Gardner P, Lockyer N, Clarke N (2010) Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. Br J Cancer 102(2):403–413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhu Q, Han X, Peng J, Qin H, Wang Y (2012) The role of CXC chemokines and their receptors in the progression and treatment of tumors. J Mol Histol 43(6):699–713

    Article  CAS  PubMed  Google Scholar 

  24. Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741

    Article  CAS  PubMed  Google Scholar 

  25. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massague J (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, Gunzer M, Roers A, Hogg N (2013) Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121(24):4930–4937

    Article  PubMed  Google Scholar 

  27. Kopesky P, Tiedemann K, Alkekhia D, Zechner C, Millard B, Schoeberl B, Komarova SV (2014) Autocrine signaling is a key regulatory element during osteoclastogenesis. Biol Open 3(8):767–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Onan D, Allan EH, Quinn JM, Gooi JH, Pompolo S, Sims NA, Gillespie MT, Martin TJ (2009) The chemokine Cxcl1 is a novel target gene of parathyroid hormone (PTH)/PTH-related protein in committed osteoblasts. Endocrinology 150(5):2244–2253

    Article  CAS  PubMed  Google Scholar 

  29. Valerio MS, Herbert BA, Basilakos DS, Browne C, Yu H, Kirkwood KL (2014) Critical role of MKP-1 in lipopolysaccharide-induced osteoclast formation through CXCL1 and CXCL2. Cytokine 71(1):71–80

    Article  PubMed  Google Scholar 

  30. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339(6117):286–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Herroon MK, Rajagurubandara E, Rudy DL, Chalasani A, Hardaway AL, Podgorski I (2013) Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene 32(12):1580–1593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Podgorski I, Linebaugh BE, Koblinski JE, Rudy DL, Herroon MK, Olive MB, Sloane BF (2009) Bone marrow-derived cathepsin K cleaves SPARC in bone metastasis. Am J Pathol 175(3):1255–1269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sadie-Van Gijsen H, Hough FS, Ferris WF (2013) Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor-gamma2 activity as a central mechanism. Bone 56(2):255–265

    Article  CAS  PubMed  Google Scholar 

  34. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev 11(6):411–425

    Article  CAS  Google Scholar 

  35. Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE, Zayzafoon M, Weizmann MN, Gururajan M, Chung LW (2011) Beta2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 71(7):2600–2610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Odero-Marah VA, Wang R, Chu G, Zayzafoon M, Xu J, Shi C, Marshall FF, Zhau HE, Chung LW (2008) Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Res 18(8):858–870

    Article  CAS  PubMed  Google Scholar 

  37. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176

    Article  CAS  PubMed  Google Scholar 

  38. Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202(3):345–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Okada Y, Naka K, Kawamura K, Matsumoto T, Nakanishi I, Fujimoto N, Sato H, Seiki M (1995) Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest 72(3):311–322

    CAS  PubMed  Google Scholar 

  40. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3(6):889–901

    Article  CAS  PubMed  Google Scholar 

  41. Inaoka T, Bilbe G, Ishibashi O, Tezuka K, Kumegawa M, Kokubo T (1995) Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun 206(1):89–96

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Q, Jia Y, Xiao Y (2009) Cathepsin K: a therapeutic target for bone diseases. Biochem Biophys Res Commun 380(4):721–723

    Article  CAS  PubMed  Google Scholar 

  43. Kavandi L, Collier MA, Nguyen H, Syed V (2012) Progesterone and calcitriol attenuate inflammatory cytokines CXCL1 and CXCL2 in ovarian and endometrial cancer cells. J Cell Biochem 113(10):3143–3152

    Article  CAS  PubMed  Google Scholar 

  44. Killian PH, Kronski E, Michalik KM, Barbieri O, Astigiano S, Sommerhoff CP, Pfeffer U, Nerlich AG, Bachmeier BE (2012) Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and - 2. Carcinogenesis 33(12):2507–2519

    Article  CAS  PubMed  Google Scholar 

  45. Roodman GD (2005) High bone turnover markers predict poor outcome in patients with bone metastasis. J Clin Oncol 23(22):4821–4822

    Article  PubMed  Google Scholar 

  46. Roodman GD (2012) Genes associate with abnormal bone cell activity in bone metastasis. Cancer Metastasis Rev 31(3–4):569–578

    Article  CAS  PubMed  Google Scholar 

  47. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27(3):165–176

    Article  CAS  PubMed  Google Scholar 

  48. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664

    Article  CAS  PubMed  Google Scholar 

  49. Kingsley LA, Fournier PG, Chirgwin JM, Guise TA (2007) Molecular biology of bone metastasis. Mol Cancer Ther 6(10):2609–2617

    Article  CAS  PubMed  Google Scholar 

  50. Lee RJ, Saylor PJ, Smith MR (2011) Treatment and prevention of bone complications from prostate cancer. Bone 48(1):88–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Roato I, D’Amelio P, Gorassini E, Grimaldi A, Bonello L, Fiori C, Delsedime L, Tizzani A, De Libero A, Isaia G, Ferracini R (2008) Osteoclasts are active in bone forming metastases of prostate cancer patients. PLoS One 3(11):e3627

    Article  PubMed Central  PubMed  Google Scholar 

  52. Gartrell BA, Saad F (2014) Managing bone metastases and reducing skeletal related events in prostate cancer. Nat Rev Clin Oncol 11(6):335–345

    Article  CAS  PubMed  Google Scholar 

  53. Wang DT (2012) Magnetic resonance imaging of bone marrow: a review: part I. J Am Osteopath Coll Radiol 1(2):1–12

    Google Scholar 

  54. Gazi E, Gardner P, Lockyer NP, Hart CA, Brown MD, Clarke NW (2007) Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy. J Lipid Res 48(8):1846–1856

    Article  CAS  PubMed  Google Scholar 

  55. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH, Higgins LS, Vessella R, Corey E, Padalecki S, Suva L, Chirgwin JM (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12(20):6213s–6216s

    Article  CAS  PubMed  Google Scholar 

  56. Schneider A, Kalikin LM, Mattos AC, Keller ET, Allen MJ, Pienta KJ, McCauley LK (2005) Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146(4):1727–1736

    Article  CAS  PubMed  Google Scholar 

  57. Tokuda Y, Satoh Y, Fujiyama C, Toda S, Sugihara H, Masaki Z (2003) Prostate cancer cell growth is modulated by adipocyte-cancer cell interaction. BJU Int 91(7):716–720

    Article  CAS  PubMed  Google Scholar 

  58. Clarke NW, Hart CA, Brown MD (2009) Molecular mechanisms of metastasis in prostate cancer. Asian J Androl 11(1):57–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ha J, Choi HS, Lee Y, Kwon HJ, Song YW, Kim HH (2010) CXC chemokine ligand 2 induced by receptor activator of NF-kappa B ligand enhances osteoclastogenesis. J Immunol 184(9):4717–4724

    Article  CAS  PubMed  Google Scholar 

  60. Oue E, Lee JW, Sakamoto K, Iimura T, Aoki K, Kayamori K, Michi Y, Yamashiro M, Harada K, Amagasa T, Yamaguchi A (2012) CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction. Biochem Biophys Res Commun 424(3):456–461

    Article  CAS  PubMed  Google Scholar 

  61. Yamashita A, Soga Y, Iwamoto Y, Asano T, Li Y, Abiko Y, Nishimura F (2008) DNA microarray analyses of genes expressed differentially in 3T3-L1 adipocytes co-cultured with murine macrophage cell line RAW264.7 in the presence of the toll-like receptor 4 ligand bacterial endotoxin. Int J Obes 32(11):1725–1729

    Article  CAS  Google Scholar 

  62. Dermitzaki E, Liapakis G, Androulidaki A, Venihaki M, Melissas J, Tsatsanis C, Margioris AN (2014) Corticotrophin-releasing factor (CRF) and the urocortins are potent regulators of the inflammatory phenotype of human and mouse white adipocytes and the differentiation of mouse 3T3L1 pre-adipocytes. PLoS One 9(5):e97060

    Article  PubMed Central  PubMed  Google Scholar 

  63. Kim HS, Han SY, Sung HY, Park SH, Kang MK, Han SJ, Kang YH (2014) Blockade of visfatin induction by oleanolic acid via disturbing IL-6-TRAF6-NF-kappaB signaling of adipocytes. Exp Biol Med 239(3):284–292

    Article  CAS  Google Scholar 

  64. Munoz A, Costa M (2013) Nutritionally mediated oxidative stress and inflammation. Oxid Med Cell Longev 2013:610950

    PubMed Central  PubMed  Google Scholar 

  65. Hol J, Wilhelmsen L, Haraldsen G (2010) The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. J Leukoc Biol 87(3):501–508

    Article  CAS  PubMed  Google Scholar 

  66. Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ (2003) Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone 33(1):28–37

    Article  CAS  PubMed  Google Scholar 

  67. Sundaram K, Rao DS, Ries WL, Reddy SV (2013) CXCL5 stimulation of RANK ligand expression in Paget’s disease of bone. Lab Invest 93(4):472–479

    Article  CAS  PubMed  Google Scholar 

  68. Chavey C, Lazennec G, Lagarrigue S, Clape C, Iankova I, Teyssier J, Annicotte JS, Schmidt J, Mataki C, Yamamoto H, Sanches R, Guma A, Stich V, Vitkova M, Jardin-Watelet B, Renard E, Strieter R, Tuthill A, Hotamisligil GS, Vidal- Puig A, Zorzano A, Langin D, Fajas L (2009) CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell Metab 9(4):339–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Bruun JM, Lihn AS, Madan AK, Pedersen SB, Schiott KM, Fain JN, Richelsen B (2004) Higher production of IL-8 in visceral vs. subcutaneous adipose tissue. Implication of nonadipose cells in adipose tissue. Am J Physiol Endocrinol Metab 286(1):E8–E13

    Article  CAS  PubMed  Google Scholar 

  70. Fain JN (2010) Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediat Inflamm 2010:513948

    Article  Google Scholar 

  71. Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B (2012) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50(2):546–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Shankar E, Vykhovanets EV, Vykhovanets OV, Maclennan GT, Singh R, Bhaskaran N, Shukla S, Gupta S (2012) High-fat diet activates pro-inflammatory response in the prostate through association of Stat-3 and NF-kappaB. Prostate 72(3):233–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Suburu J, Chen YQ (2012) Lipids and prostate cancer. Prostaglandins Other Lipid Mediat 98(1–2):1–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Leaker BR, Barnes PJ, O’Connor B (2013) Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist. Respir Res 14:137

    Article  PubMed Central  PubMed  Google Scholar 

  75. Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O’Byrne PM, Stryszak P, Gann L, Sadeh J, Chanez P (2012) Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy 42(7):1097–1103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Halina Chkourko Gusky (WSU, Karmanos Cancer Institute) and Jonathan Diedrich (WSU, Karmanos Cancer Institute) for critical revisions to the manuscript. We also thank Dr. Karin List for access to her Zeiss Scope A.1 conventional light microscope, and Kamiar Moin, and the Microscopy, Imaging and Cytometry Resources Core (MICR) for assistance with animal imager analyses. Grant support was provided by: NIH/NCI 1 R01 CA181189-01, NIH/NCI 1F31CA165834-01A1, and MICR: P30 CA 22453.

Conflict of interest

The authors disclose no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Podgorski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardaway, A.L., Herroon, M.K., Rajagurubandara, E. et al. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis 32, 353–368 (2015). https://doi.org/10.1007/s10585-015-9714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9714-5

Keywords

Navigation