Skip to main content

Advertisement

Log in

Advances in bone repair with nanobiomaterials: mini-review

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Nanotechnology has emerged to be one of the most powerful engineering approaches in the past half a century. Nanotechnology brought nanomaterials for biomedical use with diverse applications. In the present manuscript we summarize the recent progress in adopting nanobiomaterials for bone healing and repair approaches. We first discuss the use of nanophase surface modification in manipulating metals and ceramics for bone implantation, and then the use of polymers as nanofiber scaffolds in bone repair. Finally we briefly present the potential use of the nanoparticle delivery system as adjunct system in promoting bone regeneration following fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Balasundaram G, Webster TJ (2006) Nanotechnology and biomaterials for orthopaedic medical applications. Nanomedicine (Lond) 1:169–176. doi:10.2217/17435889.1.2.169

    Article  CAS  Google Scholar 

  • Bhattacharya M, Wutticharoenmongkol-Thitiwongsawet P, Hamamoto DT, Lee D, Cui T, Prasad HS, Ahmad M (2011) Bone formation on carbon nanotube composite. J Biomed Mater Res A 96:75–82. doi:10.1002/jbm.a.32958

    Google Scholar 

  • Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR (2003) In vitro evaluation of novel bioactive composites based on bioglass-filled polylactide foams for bone tissue engineering scaffolds. J Biomed Mater Res A 67:1401–1411. doi:10.1002/jbm.a.20055

    Article  CAS  Google Scholar 

  • Bokhari MA, Akay G, Zhang S, Birch MA (2005) The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel-polyHIPE polymer hybrid material. Biomaterials 26:5198–5208. doi:S0142-9612(05)00076-1

    Article  CAS  Google Scholar 

  • Burch JE (1958) Bone reaction to stainless steel fixation material. South Med J 51:1390–1394

    Article  CAS  Google Scholar 

  • Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, Snétivy D, Nolte LP (1999) Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 45:75–83. doi:10.1002/(SICI)1097-4636(199905)45

    Article  CAS  Google Scholar 

  • CfDCaP (CDC) (2001) Septic arthritis following anterior cruciate ligament reconstruction using tendon allografts—Florida and Louisiana, 2000. MMWR Morb Mortal Wkly Rep 50:1081–1083

    Google Scholar 

  • Colilla M, Manzano M, Vallet-Regi M (2008) Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomedicine 3:403–414

    CAS  Google Scholar 

  • Dégano IR, Quintana L, Vilalta M, Horna D, Rubio N, Borrós S, Semino C, Blanco J (2009) The effect of self-assembling peptide nanofiber scaffolds on mouse embryonic fibroblast implantation and proliferation. Biomaterials 30:1156–1165. doi:S0142-9612(08)00877-6

    Article  Google Scholar 

  • Deyerle WM, Bowers RV (1962) Internal fixation of bone with a metal pin (1862). Report of a case with a century of follow-up study. N Engl J Med 26:820–822

    Article  CAS  Google Scholar 

  • Disegi JA, Eschbach L (2000) Stainless steel in bone surgery. Injury 31(Suppl 4):2–6

    Article  Google Scholar 

  • Dubois G, Segers VF, Bellamy V, Sabbah L, Peyrard S, Bruneval P, Hagège AA, Lee RT, Menasché P (2008) Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. J Biomed Mater Res B Appl Biomater 87:222–228. doi:10.1002/jbm.b.31099

    Google Scholar 

  • Dupont KM, Sharma K, Stevens HY, Boerckel JD, Garcia AJ, Guldberg RE (2010) Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci USA 107:3305–3310. doi:0905444107

    Article  CAS  Google Scholar 

  • Fan H, Ikoma T, Tanaka J, Zhang X (2007) Surface structural biomimetics and the osteoinduction of calcium phosphate biomaterials. J Nanosci Nanotechnol 7:808–813

    Article  CAS  Google Scholar 

  • Ferris DM, Moodie GD, Dimond PM, Gioranni CW, Ehrlich MG, Valentini RF (1999) RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 20:2323–2331

    Article  CAS  Google Scholar 

  • Fleming JE Jr, Cornell CN, Muschler GF (2000) Bone cells and matrices in orthopaedic tissue engineering. Orthop Clin North Am 31:357–374

    Article  Google Scholar 

  • Garreta E, Gasset D, Semino C, Borros S (2007) Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. Biomol Eng 24:75–80. doi:S1389-0344(06)00062-1

    Article  CAS  Google Scholar 

  • Genove E, Shen C, Zhang S, Semino CE (2005) The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 26:3341–3351. doi:S0142-9612(04)00761-6

    Article  CAS  Google Scholar 

  • Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18:241–268

    Article  CAS  Google Scholar 

  • Harvey EJ, Henderson JE, Vengallatore ST (2010) Nanotechnology and bone healing. J Orthop Trauma 24(Suppl 1):S25–S30. doi:10.1097/BOT.0b013e3181ca3b5800005131-201003001-00006

    Article  Google Scholar 

  • Head WC, Bauk DJ, Emerson RH Jr (1995) Titanium as the material of choice for cement less femoral components in total hip arthroplasty. Clin Orthop Relat Res 15:85–90

    Google Scholar 

  • Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci 362:2821–2850. doi:MU5XD2E1UKHN7X6M

    Article  CAS  Google Scholar 

  • Joshi B, Gupta S, Kalra N, Gudyka R, Santhanam KS (2010) A new material with atomized cobalt-multiwalled carbon nanotubes: a possible substitute for human implants. J Nanosci Nanotechnol 10:3799–3804

    Article  CAS  Google Scholar 

  • Jung Y, Kim SS, Kim YH, Kim SH, Kim BS, Kim S, Choi CY (2005) A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials 26:6314–6322. doi:S0142-9612(05)00294-2

    Article  CAS  Google Scholar 

  • Kay S, Thapa A, Haberstroh KM, Webster TJ (2002) Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 8:753–761. doi:10.1089/10763270260424114

    Article  CAS  Google Scholar 

  • Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT (2008) Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 90(Suppl 1):36–42. doi:90/Supplement_1/36

    Article  Google Scholar 

  • Khang D, Carpenter J, Chun YW, Pareta R, Webster TJ (2010) Nanotechnology for regenerative medicine. Biomed Microdevices 12:575–587. doi:10.1007/s10544-008-9264-6

    Article  CAS  Google Scholar 

  • Kim K, Fisher JP (2007) Nanoparticle technology in bone tissue engineering. J Drug Target 15:241–252. doi:778358061

    Article  CAS  Google Scholar 

  • Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore RC, Brookes SJ, Aggeli A (2007) Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res 86:426–430. doi:86/5/426

    Article  CAS  Google Scholar 

  • Kubinova S, Sykova E (2010) Nanotechnologies in regenerative medicine. Minim Invasive Ther Allied Technol 19:144–156. doi:10.3109/13645706.2010.481398

    Article  Google Scholar 

  • Laurencin CT, Kumbar SG, Nukavarapu SP (2009) Nanotechnology and orthopedics: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:6–10. doi:10.1002/wnan.25

    Article  CAS  Google Scholar 

  • Li B, Chen X, Guo B, Wang X, Fan H, Zhang X (2009) Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater 5:134–143. doi:S1742-7061(08)00236-5

    Article  CAS  Google Scholar 

  • Liu H, Slamovich EB, Webster TJ (2006) Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. J Biomed Mater Res A 78:798–807. doi:10.1002/jbm.a.30734

    Google Scholar 

  • Ma PX, Zhang R, Xiao G, Franceschi R (2001) Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res 54:284–293. doi:10.1002/1097-4636(200102)54

    Article  CAS  Google Scholar 

  • Marquis ME, Lord E, Bergeron E, Drevelle O, Park H, Cabana F, Senta H, Faucheux N (2009) Bone cells-biomaterials interactions. Front Biosci 14:1023–1067

    Article  CAS  Google Scholar 

  • Marra KG, Szem JW, Kumta PN, DiMilla PA, Weiss LE (1999) In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J Biomed Mater Res 47:324–335. doi:10.1002/(SICI)1097-4636(19991205)47

    Article  CAS  Google Scholar 

  • Matsuo T, Sugita T, Kubo T, Yasunaga Y, Ochi M, Murakami T (2003) Injectable magnetic liposomes as a novel carrier of recombinant human BMP-2 for bone formation in a rat bone-defect model. J Biomed Mater Res A 66:747–754. doi:10.1002/jbm.a.10002

    Article  Google Scholar 

  • Mendes RM, Silva GA, Caliari MV, Silva EE, Ladeira LO, Ferreira AJ (2010) Effects of single wall carbon nanotubes and its functionalization with sodium hyaluronate on bone repair. Life Sci 87:215–222. doi:S0024-3205(10)00262-6

    Article  CAS  Google Scholar 

  • Misawa H, Kobayashi N, Soto-Gutierrez A, Chen Y, Yoshida A, Rivas-Carrillo JD, Navarro-Alvarez N, Tanaka K, Miki A, Takei J, Ueda T, Tanaka M, Endo H, Tanaka N, Ozaki T (2006) PuraMatrix facilitates bone regeneration in bone defects of calvaria in mice. Cell Transplant 15:903–910

    Article  Google Scholar 

  • Niu L, Kua H, Chua DH (2010) Bonelike apatite formation utilizing carbon nanotubes as template. Langmuir 26:4069–4073. doi:10.1021/la9034722

    Article  CAS  Google Scholar 

  • Ono I, Yamashita T, Jin HY, Ito Y, Hamada H, Akasaka Y, Nakasu M, Ogawa T, Jimbow K (2004) Combination of porous hydroxyapatite and cationic liposomes as a vector for BMP-2 gene therapy. Biomaterials 25:4709–4718. doi:10.1016/j.biomaterials.2003.11.038S0142961203011037

    Article  CAS  Google Scholar 

  • Oyane A, Uchida M, Yokoyama Y, Choong C, Triffitt J, Ito A (2005) Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability. J Biomed Mater Res A 75:138–145. doi:10.1002/jbm.a.30397

    Google Scholar 

  • Park J, Ries J, Gelse K, Kloss F, von der Mark K, Wiltfang J, Neukam FW, Schneider H (2003) Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther 10:1089–1098. doi:10.1038/sj.gt.33019603301960

    Article  CAS  Google Scholar 

  • Pellegrini G, Seol YJ, Gruber R, Giannobile WV (2009) Pre-clinical models for oral and periodontal reconstructive therapies. J Dent Res 88:1065–1076. doi:0022034509349748

    Article  CAS  Google Scholar 

  • Powell MC, Kanarek MS (2006) Nanomaterial health effects—part 1: background and current knowledge. WMJ 105:16–20

    Google Scholar 

  • Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5:2884–2893. doi:S1742-7061(09)00209-8

    Article  CAS  Google Scholar 

  • Price RL, Gutwein LG, Kaledin L, Tepper F, Webster TJ (2003) Osteoblast function on nanophase alumina materials: influence of chemistry, phase, and topography. J Biomed Mater Res A 67:1284–1293. doi:10.1002/jbm.a.20011

    Article  Google Scholar 

  • Price RL, Ellison K, Haberstroh KM, Webster TJ (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res A 70:129–138. doi:10.1002/jbm.a.30073

    Article  Google Scholar 

  • Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283. doi:S0141-8130(10)00016-4

    Article  CAS  Google Scholar 

  • Sato M, Webster TJ (2004) Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Devices 1:105–114. doi:10.1586/17434440.1.1.105

    Article  CAS  Google Scholar 

  • Schatzker J, Sanderson R, Murnaghan JP (1975) The holding power of orthopaedic screws in vivo. Clin Orthop Relat Res 240:115–126

    Article  Google Scholar 

  • Scheller EL, Krebsbach PH, Kohn DH (2009) Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil 36:368–389. doi:JOR1939

    Article  CAS  Google Scholar 

  • Semino CE (2008) Self-assembling peptides: from bio-inspired materials to bone regeneration. J Dent Res 87:606–616. doi:87/7/606

    Article  CAS  Google Scholar 

  • Sirivisoot S, Yao C, Xiao X, Sheldon BW, Webster TJ (2007) Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 18:365102

    Article  Google Scholar 

  • Slocik JM, Naik RR (2010) Probing peptide-nanomaterial interactions. Chem Soc Rev 39:3454–3463. doi:10.1039/b918035b

    Article  CAS  Google Scholar 

  • Soumetz FC, Pastorino L, Ruggiero C (2008) Human osteoblast-like cells response to nanofunctionalized surfaces for tissue engineering. J Biomed Mater Res B Appl Biomater 84:249–255. doi:10.1002/jbm.b.30867

    Google Scholar 

  • Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20:646–655. doi:S1084-9521(09)00069-X

    Article  CAS  Google Scholar 

  • Tang F, Zhao X (2010) Interaction between a self-assembling peptide and hydrophobic compounds. J Biomater Sci Polym Ed 21:677–690. doi:10.1163/156856209X434683

    Article  CAS  Google Scholar 

  • Torgersen S, Gjerdet NR, Erichsen ES, Bang G (1995) Metal particles and tissue changes adjacent to miniplates. A retrieval study. Acta Odontol Scand 53:65–71

    Article  CAS  Google Scholar 

  • Tran N, Webster TJ (2009) Nanotechnology for bone materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:336–351. doi:10.1002/wnan.23

    Article  CAS  Google Scholar 

  • Tutak W, Park KH, Vasilov A, Starovoytov V, Fanchini G, Cai SQ, Partridge NC, Sesti F, Chhowalla M (2009) Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks. Nanotechnology 20:255101. doi:S0957-4484(09)10583-4

    Article  Google Scholar 

  • Tutak W, Chhowalla M, Sesti F (2010) The chemical and physical characteristics of single-walled carbon nanotube film impact on osteoblastic cell response. Nanotechnology 21:315102. doi:S0957-4484(10)56467-5

    Article  Google Scholar 

  • Uhthoff HK, Bardos DI, Liskova-Kiar M (1981) The advantages of titanium alloy over stainless steel plates for the internal fixation of fractures. An experimental study in dogs. J Bone Joint Surg Br 63-B:427–484

    CAS  Google Scholar 

  • Vallet-Regi M (2010) Nanostructured mesoporous silica matrices in nanomedicine. J Intern Med 267:22–43. doi:JIM2190

    Article  CAS  Google Scholar 

  • Venable CS, Stuck WG (1948) Results of recent studies and experiments concerning metals used in the internal fixation of fractures. J Bone Joint Surg Am 30A:247–250

    CAS  Google Scholar 

  • Venugopal J, Low S, Choon AT, Ramakrishna S (2008) Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater 84:34–48. doi:10.1002/jbm.b.30841

    CAS  Google Scholar 

  • Voggenreiter G, Leiting S, Brauer H, Leiting P, Majetschak M, Bardenheuer M, Obertacke U (2003) Immuno-inflammatory tissue reaction to stainless-steel and titanium plates used for internal fixation of long bones. Biomaterials 24:247–254. doi:S0142961202003125

    Article  CAS  Google Scholar 

  • Wang J (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1:1036–1043. doi:10.1002/smll.200500214

    Article  CAS  Google Scholar 

  • Webster TJ, Ahn ES (2007) Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol 103:275–308

    CAS  Google Scholar 

  • Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739. doi:10.1016/j.biomaterials.2003.12.002S0142961203011499

    Article  CAS  Google Scholar 

  • Webster TJ, Smith TA (2005) Increased osteoblast function on PLGA composites containing nanophase Titania. J Biomed Mater Res A 74:677–686. doi:10.1002/jbm.a.30358

    Google Scholar 

  • Webster TJ, Siegel RW, Bizios R (1999) Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221–1227. doi:S0142-9612(99)00020-4

    Article  CAS  Google Scholar 

  • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000a) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810. doi:S0142-9612(00)00075-2

    Article  CAS  Google Scholar 

  • Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000b) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483. doi:10.1002/1097-4636(20000905)51

    Article  CAS  Google Scholar 

  • Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757. doi:10.1016/j.biomaterials.2003.12.005S0142961203011542

    Article  CAS  Google Scholar 

  • Wheeler DL, Enneking WF (2005) Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res 83:36–42. doi:00003086-200506000-00008

    Article  Google Scholar 

  • Xiao X, Liu R, Huang Q (2008) Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds. J Mater Sci Mater Med 19:3429–3435. doi:10.1007/s10856-008-3499-x

    Article  CAS  Google Scholar 

  • Yao C, Storey D, Webster TJ (2007) Nanostructured metal coatings on polymers increase osteoblast attachment. Int J Nanomedicine 2:487–492

    CAS  Google Scholar 

  • Yao C, Slamovich EB, Webster TJ (2008) Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J Biomed Mater Res A 85:157–166. doi:10.1002/jbm.a.31551

    Google Scholar 

  • Yi F, Wu H, Jia GL (2006) Formulation and characterization of poly (d, l-lactide-co-glycolide) nanoparticle containing vascular endothelial growth factor for gene delivery. J Clin Pharm Ther 31:43–48. doi:JCP702

    Article  CAS  Google Scholar 

  • Yokoyama Y, Oyane A, Ito A (2007) Biomimetic coating of an apatite layer on poly(l-lactic acid); improvement of adhesive strength of the coating. J Mater Sci Mater Med 18:1727–1734. doi:10.1007/s10856-007-3024-7

    Article  CAS  Google Scholar 

  • Zhang S, Uludag H (2009) Nanoparticulate systems for growth factor delivery. Pharm Res 26:1561–1580. doi:10.1007/s11095-009-9897-z

    Article  CAS  Google Scholar 

  • Zhang L, Chen L, Wells T, El-Gomati M (2009) Bamboo and herringbone shaped carbon nanotubes and carbon nanofibres synthesized in direct current-plasma enhanced chemical vapour deposition. J Nanosci Nanotechnol 9:4502–4506

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors declare no conflicts of interest, and were supported by National Scientific Funding (No: 30800572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Chun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZG., Li, ZH., Mao, XZ. et al. Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 63, 437–443 (2011). https://doi.org/10.1007/s10616-011-9367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-011-9367-4

Keywords

Navigation