Skip to main content

Advertisement

Log in

Ammonia emissions from a broiler farm: spatial variability of airborne concentrations in the vicinity and impact on adjacent woodland

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Agricultural NH3 emissions affect air quality and influence the nitrogen cycle. In the subject study, NH3 emissions from a broiler farm and the resulting atmospheric concentrations in the immediate vicinity during three growing cycles have been quantified. Additionally, vegetation along a transect in an adjacent woodland was analysed. The emissions were as high as 10 kg NH3 h−1 and the atmospheric concentrations ranged between 33 and 124 μg NH3 m−3 per week in the immediate vicinity. Measurements of the atmospheric concentrations over 7 weeks showed a substantial decline of mean concentrations (based on a 3-week average) from ∼13 to <3 μg NH3 m−3, at 45- and 415-m distance from the farm. Vegetation surveys showed that nitrophilous species flourished when they grew closest to the farm (their occurrence sank proportionately with distance). A clearly visible damage of pine trees was observed within 200 m of the farm; this illustrated the significant impact of NH3 emissions from agricultural sources on the sensitive ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrizal, A., Patterson, P. H., Hulet, R. M., Bates, R. M., Myers, C. A. B., Martin, G. P., et al. (2008). Vegetation buffers for fan emissions from poultry farms: 2. Ammonia, dust and foliar nitrogen. Journal of Environmental Science and Health. Part B, 43, 96–103.

    Article  CAS  Google Scholar 

  • Aneja, V. P., Roelle, P. A., Murray, G. C., Southerland, J., Erisman, J. W., Fowler, D., et al. (2001). Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition and assessment. Atmospheric Environment, 35, 1905–1911.

    Google Scholar 

  • Aneja, V. P., Blunden, J., Roelle, P. A., Schlesinger, W. H., Knighton, R., Niyogi, D., et al. (2008). Workshop of Agricultural Air Quality: State of the Science. Atmospheric Environment, 42, 3195–3208.

    Article  CAS  Google Scholar 

  • Bessei, W. (2006). Welfare of broilers: A review. World's Poultry Science Journal, 62, 455–466.

    Article  Google Scholar 

  • Blanes-Vidal, V., Hansen, M. N., Pedersen, S., & Rom, H. B. (2008). Emissions of ammonia, methane and nitrous oxide from pig barns and slurry: Effects of rooting material, animal activity and ventilation flow. Agriculture, Ecosystems and Environment, 124, 237–244.

    Article  CAS  Google Scholar 

  • Brown, R. H. (1993). The use of diffusive samplers for monitoring of ambient air. Pure and Applied Chemistry, 65, 1859–1874.

    Article  CAS  Google Scholar 

  • Brown, R. H., & Wright, M. D. (1994). Diffusive sampling using tube-type samplers. Analyst, 119, 75–77.

    Article  CAS  Google Scholar 

  • Buijsman, E., Aben, J. M. M., van Elzakker, B. G., & Mennen, M. G. (1998). An automatic atmospheric ammonia network in the Netherlands set-up and results. Atmospheric Environment, 32, 317–324.

    Article  CAS  Google Scholar 

  • Campbell, G. W. (1988). Measurements of nitrogen dioxide concentration at rural sites in the United Kingdom using diffusion tubes. Environmental Pollution, 55, 251–270.

    Article  CAS  Google Scholar 

  • Clemitshaw, K. C. (2004). A review of instrumentation and measurement techniques for ground-based and airborne filed studies of gas-phase troposheric chemistry. Critical Reviews in Environmental Science and Technology, 34, 1–108.

    Article  CAS  Google Scholar 

  • Cocheo, C., Boaretto, C., Pagani, D., Quaglio, F., Sacco, P., Zaratin, L., et al. (2008). Field evaluation of thermal and chemical desorption BTEX radial diffusive sampler radiello compared with active (pumped) samplers for ambient air measurements. Journal of Environmental Monitoring, 11, 297–306.

    Article  Google Scholar 

  • DIN-EN 13528-3 (2004). Ambient air quality—Diffusive samplers for the determination of concentrations of gases and vapours—Part 3: Guide to selection, use and maintenance. Beuth Verlag, Berlin, pp. 1–43.

  • Erisman, J. W., Otjes, R., Hensen, A., Jongejan, P., van den Bulk, P., Khlystov, A., et al. (2001). Instrument development and application in studies and monitoring of ambient ammonia. Atmospheric Environment, 35, 1913–1922.

    Article  CAS  Google Scholar 

  • Erisman, J. W., Hensen, A., Mosquera, J., Sutton, M., & Fowler, D. (2005). Deposition monitoring networks: What monitoring is required to give reasonable estimates of ammonia/ammonium? Environmental Pollution, 135, 419–431.

    Article  CAS  Google Scholar 

  • Erisman, J. W., Bleeker, A., Galloway, J., & Sutton, M. A. (2007). Reduced nitrogen in ecology and the environment. Environmental Pollution, 150, 140–149.

    Article  CAS  Google Scholar 

  • Erisman, J. W., Bleeker, A., Hensen, A., & Vermeulen, A. (2008). Agricultural air quality in Europe and the future perspectives. Atmospheric Environment, 42, 3209–3217.

    Article  CAS  Google Scholar 

  • Fangmeier, A., Hadwiger-Fangmeier, A., van der Eerden, L., & Jäger, H.-J. (1994). Effects of atmospheric ammonia on vegetation—A review. Environmental Pollution, 86, 43–82.

    Article  CAS  Google Scholar 

  • Ferm, M. (1991). A sensitive diffusive sampler. Göteborg, Swedish Environmental Research Institute, Report L91-172.

  • Ferm, M. (1998). Atmospheric ammonia and ammonium transport in Europe and critical loads: A review. Nutrient Cycling in Agroecosystems, 51, 5–17.

    Article  CAS  Google Scholar 

  • Fowler, W. J. (1982). Fundamentals of passive vapour sampling. American Laboratory, 14, 80–87.

    CAS  Google Scholar 

  • Fowler, D., Pitcairn, C. E. R., Sutton, M. A., Flechard, C., Loubet, B., Coyle, M., et al. (1998). The mass budget of atmospheric ammonia in woodland within 1 km of livestock buildings. Environmental Pollution, 102(S1), 343–348.

    Article  CAS  Google Scholar 

  • Fowler, D., Skiba, U., Nemitz, E., Choubedar, F., Branford, D., Donovan, R., et al. (2004). Measuring aerosols and heavy metal deposition on urban woodland and grass using inventories of 210Pb and metal concentrations in soil. Water, Air and Soil Pollution, Focus, 4, 483–499.

    Article  CAS  Google Scholar 

  • Gates, R. S., Casey, K. D., Wheeler, E. F., Xin, H., & Pescatore, A. J. (2008). U.S. broiler housing emissions inventory. Atmospheric Environment, 42, 3342–3350.

    Article  CAS  Google Scholar 

  • Hinz, T., Linke, S., Eisenschmidt, R., Müller, H.-J., & von Bobrutzki, K. (2008). Small scale dispersion of ammonia around animal husbandries. Landbauforschung Völkenrode, 58, 295–305.

    Google Scholar 

  • Kallweit, R., & Böttinger, A. (2001). Waldschadenserhebung (WSE, Level I). Forstliche umweltkontrolle ergebnisse aus zehnjährigen untersuchungen zur wirkung von luftverunreinigungen in Brandenburgs Wäldern (pp. 16–37). Eberswalde: Landesforstanstalt.

    Google Scholar 

  • Kasper, A., & Puxbaum, H. (1994). Determination of SO2, HNO3, NH3 and aerosol components at high alpine background site with a filter pack. Analytica Chimica Acta, 291, 297–304.

    Article  CAS  Google Scholar 

  • Kirchner, M., Braeutigam, S., Ferm, M., Haas, M., Hangartner, M., Hofschreuder, P., et al. (1999). Field intercomparison of diffusive samplers for measuring ammonia. Journal of Environmental Monitoring, 1, 259–265.

    Article  CAS  Google Scholar 

  • Krupa, S. (2003). Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environmental Pollution, 124, 179–221.

    Article  CAS  Google Scholar 

  • Löflund, M., Kasper-Giebel, A., Stopper, S., Urban, H., Biebl, P., Kirchner, M., et al. (2002). Monitoring ammonia in urban, inner alpine and pre-alpine ambient air. Journal of Environmental Monitoring, 4, 205–209.

    Article  Google Scholar 

  • Mosquera, J., Monteny, G. J. & Erisman, J. W. (2005). Overview and assessment of techniques to measure ammonia emissions from animal houses: the case of the Netherlands. Environmental Pollution, 135, 381–388.

    Google Scholar 

  • Naiesnik, J., Zabiegala, B., Kot-Wasik, A., Partyka, M., & Wasik, A. (2005). Passive sampling and/or extraction techniques in environmental analysis: A review. Analytical and Bioanalytical Chemistry, 381, 279–301.

    Article  Google Scholar 

  • Pitcairn, C. E. R., Leith, I. D., Sheppard, L. J., Sutton, M. A., Fowler, D., Munro, R. C., et al. (1998). The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution, 102, 41–48.

    Article  CAS  Google Scholar 

  • Pitcairn, C. E. R., Skiba, U. M., Sutton, M. A., Fowler, D., Munro, R. C., & Kennedy, V. (2002). Defining the spatial impacts of poultry farm ammonia emissions on species composition of adjacent woodland groundflora using Ellenberg Nitrogen Index, nitrous oxide and nitric oxide emissions and foliar nitrogen as marker variables. Environmental Pollution, 119, 9–21.

    Article  CAS  Google Scholar 

  • Pitcairn, C. E. R., Leith, I. D., van Dijk, N., Sheppard, L. J., Sutton, M. A., & Fowler, D. (2009). The application of transects to assess the effects of ammonia on woodland groundflora. In MA Sutton, S Reis, S Baker (Eds.), Atmospheric ammonia (pp. 49–58). Berlin: Springer.

  • Pryor, S. C., Barthelmie, R. J., Sorensen, L. L., & Jensen, B. (2001). Ammonia concentrations and fluxes over a forest in the Midwestern USA. Atmospheric Environment, 35, 5645–5666.

    Article  CAS  Google Scholar 

  • Redwine, J. S., Lacey, R., Mukhtar, S., & Carey, J. B. (2002). Concentration and emissions of ammonia and particular matter in tunnel-ventilated broiler barns under summer conditions in Texas. ASABE, 45, 1101–1109.

    CAS  Google Scholar 

  • Seethapathy, S., Górecki, T., & Li, X. (2008). Passive sampling in environmental analysis. Journal of Chromatography A, 1184, 234–253.

    Article  CAS  Google Scholar 

  • Skiba, U., Sheppard, L., Pitcairn, C. E. R., Leith, I., Crossley, A., van Dijk, N., et al. (1998). Soil nitrous oxide and nitric oxide emissions as indicators of elevated atmospheric N deposition rates in seminatural ecosystems. Environmental Pollution, 102, 457–461.

    Article  CAS  Google Scholar 

  • Skiba, U., Pitcairn, C., Sheppard, L., Kennedy, V., & Fowler, D. (2004). The influence of atmospheric N deposition on nitrous oxide and nitric oxide fluxes and soil ammonium and nitrate concentrations. Water, Air and Soil Pollution, Focus, 4, 37–43.

    CAS  Google Scholar 

  • Skiba, U., Dick, J., Storeton-West, R., Lopez-Fernandez, S., Woods, C., Tang, S., et al. (2006). The relationship between NH3 emissions from a poultry farm and soil NO and N2O fluxes from a downwind forest. Biogeosciences, 3, 375–382.

    Article  CAS  Google Scholar 

  • Sutton, M. A., Pitcairn, C. E. R., & Fowler, D. (1993). The exchange of ammonia between the atmosphere and plant communities. Advantages in Ecology Research, 24, 301–393.

    Article  CAS  Google Scholar 

  • Sutton, M. A., Fowler, D., Burkhardt, J. K., & Milford, C. (1995). Vegetation atmosphere exchange of ammonia: canopy cycling and the impacts of elevated nitrogen inputs. Water, Air, and Soil Pollution, 85, 2057–2063.

    Article  CAS  Google Scholar 

  • Sutton, M. A., Milford, C., Dragosits, U., Place, C. J., Singles, R. J., Smith, R. I., et al. (1998). Dispersion, deposition and impact of atmospheric ammonia: Quantifying local budgets and spatial variability. Environmental Pollution, 102, 349–361.

    Article  CAS  Google Scholar 

  • TA-Luft (2002). Technical instructions on air quality control. Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. http://www.taluft.com/taluft20020730.pdf.

  • Theobald, M., Dragosits, U., Place, C. J., Smith, J. U., Sozanska, M., Brown, L., et al. (2004). Modelling nitrogen fluxes at the landscape scale. Water, Air and Soil Pollution, Focus, 4, 135–142.

    Article  CAS  Google Scholar 

  • Thöni, L., Brang, P., Braun, S., Seitler, E., & Rihm, B. (2004). Ammonia monitoring in Switzerland with passive samplers: Patterns, determinations and comparison with modelled concentrations. Environmental Monitoring and Assessment, 98, 93–107.

    Article  Google Scholar 

  • Tyndall, J., & Colletti, J. (2007). Mitigating swine odor with strategically designed shelterbelt systems: A review. Agroforestry Systems, 69, 45–65.

    Article  Google Scholar 

  • UNECE (1999). Draft protocol to the 1979 Convention on Long Range Transboundary Air Pollution to Abate Acidification, Eutrophication and Ground Level Ozone (EB.AIR/1999.1).

  • van der Eerden, L. J. M. (1982). Toxicity of ammonia to plants. Agriculture and Environment, 7, 223–235.

    Article  Google Scholar 

  • von Bobrutzki, K., Braban, C. F., Famulari, D., Jones, S. K., Blackall, T., Smith, T. E. L., et al. (2010). Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmospheric Measurement Techniques, 3, 91–112.

    Article  Google Scholar 

  • von Bobrutzki, K., Müller, H.-J., & Scherer, D. (2011). Factors affecting the ammonia content in the air surrounding a broiler farm. Biosystems Engineering, 108, 322–333.

    Article  Google Scholar 

  • Waldzustandsbericht (2008). Waldzustandsbericht der Länder Brandenburg und Berlin. http://www.brandenburg.de/cms/media.php/2324/wse2008.pdf.

  • Warneck, P. (1988). Chemistry of the natural atmosphere. New York: Academic.

    Google Scholar 

  • Zimmerling, R. (2000). Die qualität der konzentrationsmessung mit passiv-samlern ergebnisse methodischer untersuchungen. Landbauforschung Völkenrode, 213, 129–133.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Leibniz Institute of Agricultural Engineering Potsdam-Bornim for its financial support and providing the contact to the broiler farm. We are grateful to the farmer who encouraged the extensive measurements in and around the broiler farm. We also acknowledge the support of the Eberswalde Forestry Competence Centre (Research Institute of the Public Enterprise Forst Brandenburg) for recording data of the vegetation surveys and taking the measurements with passive samplers along a transect through the woodland. Furthermore, we wish to thank the Federal Research Institute for Rural Areas, Forestry and Fisheries in Braunschweig for the provision of passive samplers at five monitoring points around the farm with subsequent lab analyses. Special thank goes to Thorsten Hinz and Richard Eisenschmidt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina von Bobrutzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Bobrutzki, K., Ammon, C., Berg, W. et al. Ammonia emissions from a broiler farm: spatial variability of airborne concentrations in the vicinity and impact on adjacent woodland. Environ Monit Assess 184, 3775–3787 (2012). https://doi.org/10.1007/s10661-011-2223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2223-3

Keywords

Navigation