Skip to main content
Log in

The Forgotten Tradition: How the Logical Empiricists Missed the Philosophical Significance of the Work of Riemann, Christoffel and Ricci

  • Original Article
  • Published:
Erkenntnis Aims and scope Submit manuscript

Abstract

This paper attempts to show how the logical empiricists’ interpretation of the relation between geometry and reality emerges from a “collision” of mathematical traditions. Considering Riemann’s work as the initiator of a 19th century geometrical tradition, whose main protagonists were Helmholtz and Poincaré, the logical empiricists neglected the fact that Riemann’s revolutionary insight flourished instead in a non-geometrical tradition dominated by the works of Christoffel and Ricci-Curbastro roughly in the same years. I will argue that, in the attempt to interpret general relativity as the last link of the chain Riemann–Helmholtz–Poincaré–Einstein, logical empiricists were led to argue that Einstein’s theory of gravitation mainly raised a problem of mathematical under-determination, i.e. the discovery that there are physical differences that cannot be expressed in the relevant mathematical structure of the theory. However, a historical reconstruction of the alternative Riemann–Christoffel–Ricci–Einstein line of evolution shows on the contrary that the main philosophical issue raised by Einstein’s theory was instead that of mathematical over-determination, i.e. the recognition of the presence of redundant mathematical differences that do not have any correspondence in physical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. For sake of historical accuracy along the paper we will try to remain faithful to the original notations. used by the various authors considered.

  2. where \(\frac{E_{rk}}{E}\) are the inverse matrix of \(\omega_{ik}\)

  3. Einstein 1915d

  4. cf. Reichenbach’s letter to Schlick on December, 6 1926 mentioned in (Schlick 2006, vol. 6, 175)

References

  • Bergmann, P. G. (1956). Fifty years of relativity. Science, 123(3195), 487–494.

    Google Scholar 

  • Bergmann, P. G. (1961). ‘Gauge-invariant’ variables in general relativity. Physical Review, 124, 274–278.

    Google Scholar 

  • Bergmann, P. G. (1961). Observables in general relativity. Reviews of Modern Physics, 33(4), 510–514.

    Google Scholar 

  • Bergmann, P. G. (1968). The riddle of gravitation. New York: Scribner.

    Google Scholar 

  • Bergmann, P. G., & Komar, A. B. (1960). Poisson brackets between locally defined observables in general relativity. Physical Review Letters, 4, 432–433.

    Google Scholar 

  • Bianchi, L. (1894). Lezioni di geometria differenziale. Pisa: Spoerri.

    Google Scholar 

  • Bianchi, L. (1902). Relazione sul concorso al Premio Reale, del 1901, per la Matematica. Atti della R. Accademia del Licei, 5(2), 142–151.

    Google Scholar 

  • Bottazzini, U. (1999). Ricci and Levi-Civita: From differential invariants to general relativity. In J. Gray (Eds.), The symbolic universe. (pp. 240–257). Oxford/New York: Oxford University Press.

    Google Scholar 

  • Butzer, P. (1981). An outline of the life and work of E. B. Christoffel (1829–1900). Historia Mathematica, 8(3), 243–276.

    Google Scholar 

  • Carnap, R. (1922). Der Raum. Ein Beitrag zur Wissenschaftslehre. Berlin: Reuther & Reichard.

    Google Scholar 

  • Carnap, R. (1923). Über die Aufgabe der Physik und die Anwendung des Grundsatzes der Einfachstheit. Kant-Studien, 28, 90–107.

    Google Scholar 

  • Carnap, R. (1925). Über die Abhängigkeit der Eigenschaften des Raumes von denen der Zeit. Kant-Studien, 30, 331–345.

    Google Scholar 

  • Cartan, E. (1923). Sur les variétés á connexion affine et la théorie de la relativité généralisée (premiére partie). Annales scientifiques de l’École Normale Supérieure, 40, 325–412.

    Google Scholar 

  • Cartan, E. (1925). Sur les variétés á connexion affine et la théorie de la relativité généralisée, Part II. Ann. Ec. Norm., 42, 17–88.

    Google Scholar 

  • Cartan, E. (1931). Géométrie euclidienne et géométrie riemannienne. Scientia (Milano), 42, 393–402.

    Google Scholar 

  • Cartan, E. (1924a). La théorie des groupes et les recherches récentes en géométrie différentielle. In Proceedings international mathematical congress Toronto, Vol. 1. Toronto: The University of Toronto Press.

  • Cartan, E. (1924b). Sur les variétés á connexion affine, et la théorie de la relativité généralisée (premiére partie) (Suite). Annales scientifiques de l’École Normale Supérieure, 41, 1–25.

    Google Scholar 

  • Cattani, C., & De Maria, M. (1989). The 1915 epistolary controversy between A. Einstein and T. LeviCivita. In D. Howard & J. Stachel (Eds.), The history of general relativity.. New York: Birkhäuser.

    Google Scholar 

  • Christoffel, E. B. (1869). Üeber die Transformation der homogenen Differentialausdrücke zweiten Grades. Journal für die reine und angewandte Mathematik, 70, 46–70. now in Christoffel, 1910, Vol. I, 352–377, 378–382.

  • Christoffel, E. B. (1910). Gesammelte mathematische Abhandlungen, Vol. L. Maurer. Leipzig: Teubner.

  • Clifford, W. K. (1876). On the space-theory of matter. In Proceedings of the Cambridge philosophical society (1864–1876) 2, 157–158. Communications made to the Society, February 21, 1870.

  • Coffa, A. J. (1979). Elective affinities: Weyl and Reichenbach. In W. C. Salmon (Eds.), Hans Reichenbach: Logical empirist. Dordrecht, Boston, London: Kluwer.

    Google Scholar 

  • Coffa, A. J. (1991). The semantic tradition from Kant to Carnap: To the Vienna station. Cambridge: Cambridge University Press.

    Google Scholar 

  • Corry, L. (2003). David Hilbert and the axiomatization of physics (1898–1918): From Grundlagen der Geometrie to Grundlagen der Physik. Dordrecht: Kluwer.

    Google Scholar 

  • CPAE: Einstein, A. (1996). The collected papers of Albert Einstein. Princeton: Princeton University Press.

  • Dell’Aglio, L. (1996). On the genesis of the concept of covariant differentiation. Revue d’histoire des mathématiques, 2, 215–264.

    Google Scholar 

  • Dickson, M., & Domski, M. (eds.) (2010). Discourse on a new method: Reinvigorating the marriage of history and philosophy of science. Chicago: Open Court.

    Google Scholar 

  • Dieks, D. (2010). Reichenbach and the conventionality of distant simultaneity in perspective. In F. Stadler (Ed.), The present situation in the philosophy of science. (pp. 315–333). Berlin: Springer.

    Google Scholar 

  • DiSalle, R. (2006). Understanding space-time: The philosophical development of physics from Newton to Einstein. Cambridge, UK: Cambridge. University Press.

    Google Scholar 

  • Earman, J., & Glymour, C. (1978a). Einstein and Hilbert: Two months in the history of general relativity. Archive for History of Exact Sciences, 19, 291–308.

    Google Scholar 

  • Earman, J., & Glymour, C. (1978b). Lost in the tensors: Einstein’s struggles with covariance principles 1912–1916. Studies In History and Philosophy of Science Part A, 9(4), 251–278.

    Google Scholar 

  • Eddington, A. S. (1920). Space, time and gravitation: An outline of the general relativity theory. Cambridge: University Press.

    Google Scholar 

  • Eddington, A. S. (1923). The mathematical theory of relativity. Cambridge: University Press.

    Google Scholar 

  • Ehlers, J. (1981). Christoffel’s work on the equivalence problem for Riemannian spaces and its importance for modem field theories of physics. In F. Butzer & P. L. Fehér (Eds.), E. B. Christoffel: The influence of his work on mathematics and the physical sciences. Basel: Birkhäuser.

    Google Scholar 

  • Einstein, A. (1956). The meaning of relativity. (5th ed.). Princeton: Princeton Univerity Press.

    Google Scholar 

  • Einstein, A. a. a. (1972). Correspondance 1903–1955 : Trad. notes et introd. de Pierre Speziali. Histoire de la pensée; 17. Paris: Hermann.

  • Einstein, A. (1907). Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität 4, 411–462. now in CPAE 2, Doc. 47.

  • Einstein, A. (1914). Die formale Grundlage der allgemeinen Relativitätstheorie. Preussische Akademie der Wissenschaften, Sitzungsberichte-, 1030–1085. now in CPAE 6, Doc. 9.

  • Einstein, A. (1915a). Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Preussische Akademie der Wissenschaften, Sitzungsberichte -, 831–839. now in CPAE 6, Doc. 24.

  • Einstein, A. (1915b). Feldgleichungen der Gravitation. Preussische Akademie der Wissenschaften, Sitzungsberichte-, 844–847. now in CPAE 6, Doc. 25.

  • Einstein, A. (1915c). Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der Astronomie. Preussische Akademie der Wissenschaften, Sitzungsberichte -, 315.

  • Einstein, A. (1915d). Zur allgemeinen Relativitätstheorie. Preussische Akademie der Wissenschaften, Sitzungsberichte -, 778–786, 799–801. now in CPAE 6, Doc. 21 and 22.

  • Einstein, A. (1916a). Über Fr. Kottlers Abhandlung: Einsteins Äquivalenzhypothese und die Gravitation. Annalen der Physik 51, 239. now in CPAE 6, Doc. 40.

  • Einstein, A. (1916b). Die grundlage der allgemeinen Relativitätstheorie. Annalen der Physik 49, 769–822. now in CPAE 6, Doc 30.

  • Einstein, A. (1917). Über die spezielle und die allgemeine Relativitaetstheorie (gemeinverständlich). Braunschweig: Vieweg. now in CPAE 6, Doc. 42.

  • Einstein, A. (1918a). Dialog über Einwände gegen die Relativitätstheorie. Naturwissenschaften 6, 697–702. now in CPAE 7, Doc. 13.

  • Einstein, A. (1918b). Nachtrag zu H. Weyl, Gravitation und Elektrizität. Sitzungsberichte der Preussischen Akademie der Wissenschaften-, 478–80.

  • Einstein, A. (1918c). Prinzipielles zur allgemeinen Relativitätstheorie. Annalen der Physik 55, 241–244. now in CPAE 7, Doc. 4.

  • Einstein, A. (1921a). Geometrie und Erfahrung. Erweiterte Fassung des Festvortrages gehalten an der Preussischen Akademie der Wissenschaften zu Berlin am 27. Januar 1921. Berlin: Springer. now in CPAE 7, Doc. 52.

  • Einstein, A. (1921b). Vier Vorlesungen über Relativitätstheorie, gehalten im Mai 1921, an der Universität Princeton. Braunschweig: Vieweg. now in CPAE 7, Doc. 71.

  • Einstein, A. (1922). Vorwort des Autors zur Tschechischen Ausgabe. Written in 1922 for the 1923 Czech edition of Einstein, 1917.

  • Einstein, A. (1952). Über die spezielle und die allgemeine Relativitaetstheorie (gemeinverständlich) (16 ed.). Braunschweig: Vieweg.

  • Einstein, A., & Grossmann, M. (1913). Entwurf einer verallgemeinerten Relativitätstheorie und eine Theorie der Gravitation. I. Physikalischer Teil von A. Einstein II. Mathematischer Teil von M. Grossmann. Zeitschrift für Mathematik und Physik 62, 225–244, 245–261. now in CPAE 4, 13.

  • Farwell, R. (1990). The missing link: Riemann’s ‘commentatio,’ differential geometry and tensor analysis. Historia Mathematica, 17, 223–255.

    Google Scholar 

  • Fogel, B. (2008). Epistemology of a theory of everything. Notre Dame: Weyl, Einstein, and the Unification of Physics. University of Notre Dame Diss.

    Google Scholar 

  • Friedman, M. (1983). Foundations of space-time theories: Relativistic physics and philosophy of science. Princeton: Princeton University Press.

    Google Scholar 

  • Friedman, M. (1999). Reconsidering logical positivism. New York: Cambridge University Press.

    Google Scholar 

  • Friedman, M. (2002). Geometry as a branch of physics, background and context for Eisnstein’s ‘geometry and experience’. In D. Malament (Eds.), Reading natural philosophy. Chicago-La Salle (Ill.): Open Court.

    Google Scholar 

  • Friedman, M. (2008). Space, time, and geometry: Einstein and logical empiricism. In P. L. Galis, G. J. Holton & S. S. Schweber (Eds.), Einstein for the 21st century: His legacy in science, art, and modern culture. (pp. 205–216). Princeton: Princeton University Press.

    Google Scholar 

  • Friedman, M. (1995). Poincaré’s conventionalism and the logical positivists. Foundations of Science 2, 299–314. now in [Friedman 1999].

  • Gauss, C. F. (1827). Disquisitiones generales circa superficies curvas. Gottingae.

  • Giovanelli, M. (2012). Talking at cross-purposes: How Einstein and the logical empiricists never agreed on what they were disagreeing about. Synthese, forthcoming

  • Giulini, D. (2007). Remarks on the notions of general covariance and background independence. Lecture Notes in Physics, 721, 105–120.

    Google Scholar 

  • Giulini, D. (2001). Das Problem der Trägheit. MPIGW-Preprint 190.

  • Hawkins, T. (1980). Non-euclidean geometry and Weierstrassian mathematics: The background to killing’s work on lie algebras. Historia Mathematica, 7(3), 289–342.

    Google Scholar 

  • Hawkins, T. (2000). Emergence of the theory of lie groups: An essay in the history of mathematics, 1869–1926. Sources and studies in the history of mathematics and physical sciences.. New York: Springer.

    Google Scholar 

  • Helmholtz, H. (1868). Über die Tatsachen, die der Geometrie zu Grunde liegen. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Universität zu Göttingen, 9, 193–221.

    Google Scholar 

  • Helmholtz, H. (1878). The origin and meaning of geometrical axioms II. Mind, 3, 212–225.

    Google Scholar 

  • Helmholtz, H. (1879). Die Thatsachen in der Wahrnehmung: Rede gehalten zur Stiftungsfeier der Friedrich–Wilhelms–Universität zu Berlin am 3. Aug 1878. A. Berlin: Hirschwald.

    Google Scholar 

  • Helmholtz, H. (1921). Schriften zur Erkenntnistheorie. Berlin: Springer.

    Google Scholar 

  • Helmholtz, H. (1870/1883). Über Ursprung und Bedeutung der geometrischen Axiome. In Vorträge und Reden. pp. 1–31. Braunschweig: Vieweg.

  • Herbert, D. (1991). Die Entstehung des Tensorkalküls : Von den Anfängen in der Elastizitätstheorie bis zur Verwendung in der Baustatik. Boethius; 28. Stuttgart: Steiner.

  • Hessenberg, G. (1917/18). Vektorielle Begründung der Differentialgeometrie. Mathematische Annalen 78, 187–217.

    Google Scholar 

  • Howard, D. (1984). Realism and conventionalism in Einstein’s philosophy of science: The Einstein–Schlick correspondence. Philosophia naturalis, 21, 618–629.

    Google Scholar 

  • Howard, D. (1990). Einstein and Duhem. Synthese, 83, 363–384.

    Google Scholar 

  • Howard, D. (1994). Einstein, Kant and the origins of logical empiricism. In W. C. Salmon and G. Wolters (Eds.), Logic, language, and the structure of scientific theories: Proceedings of the Carnap–Reichenbach Centennial, University of Konstanz, 21–24 May 1991. Pittsburgh, Pa.; Konstanz: University of Pittsburgh Press; Universitätsverlag Konstanz.

  • Howard, D. (2005). Einstein’s philosophy of science. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Spring 2004 Edition).

  • Janssen, M. (2008, December). ‘No success like failure...’: Einstein’s quest for general relativity, 1907–1920.

  • Janssen, M. (2005). Of pots and holes: Einstein’s bumpy road to general relativity. Annalen der Physik 14; Supplement, 58–85.

  • Janssen, M. (2011, May). The twins and the bucket: How Einstein made gravity rather than motion relative in general relativity.

  • Janssen, M., & Renn, J. (2007). Untying the Knot: How Einstein found his way back to field equations discarded in the Zurich notebook. In M. Janssen, J. D. Norton, J. Renn, T. Sauer, & J. Stachel (Ed.), The genesis of general relativity, Vol. 250 of Boston studies in the philosophy of science. pp. 839–925. Springer Netherlands.

  • Koenigsberger, L. (1906). Hermann von Helmholtz. Oxford: Clarendon Press.

    Google Scholar 

  • Kottler, F. (1916). Über Einsteins Äquivalenzhypothese und die Gravitation. Annalen der Physik, 355(16), 955–972.

    Google Scholar 

  • Kretschmann, E. (1917). Über den physikalischen Sinn der Relativitätspostulate. A. Einsteins neue und seine ursprüngliche Relativitätstheorie. Annalen der Physik, 53, 575–614.

    Google Scholar 

  • Lehmkuhl, D. (2008). Is spacetime a gravitational field?. In D. Dieks (Ed.), The ontology of spacetime II, philosophy and foundations of physics.. Amsterdam: Elsevier Science.

    Google Scholar 

  • Levi-Civita, M. (1916). Nozione di parallelismo in una varietáqualunque e conseguente specificazione geometrica della curvatura riemanniana. Rendiconti del Circolo Matematico di Palermo (1884–1940, 42, 173–204.

    Google Scholar 

  • Levi-Civita, T. (1925). Lezioni di calcolo differenziale assoluto. Roma: Stock.

    Google Scholar 

  • Levi-Civita, T. (1927). The absolute differential calculus (calculus of tensors). London/Glasgow: Blackie & Son.

    Google Scholar 

  • Levi-Civita, T., & Ricci-Curbastro, G. (1900). Méthodes de calcul différentiel absolu et leurs applications. Mathematische Annalen 54, 125–201. now in Ricci-Curbarstro 1956-57, I.

    Google Scholar 

  • Libois, P. (1957). Quelques applications des idees de Riemann sur l’espace. In J. Naas & K. Schröder (Eds.), Der Begriff des Raumes in der Geometrie: Bericht von der Riemann–Tagung des Forschungsinstituts für mathematik. (pp. 194–201). Berlin: Akademie-Verlag.

    Google Scholar 

  • Lie, S. (1886). Bemerkungen zu v. Helmholtz’ Arbeit über die Tatsachen, welche der Geometrie zugrunde liegen. Berichte über die Verhandlungen der Kgl. Sächsischen Gesellschaft der Wissenschaften zu Leipzig, 38, 337–342.

    Google Scholar 

  • Lipschitz, R. (1869). Untersuchungen in Betreff der ganzen homogenen Functionen von n Differentialen. Journal fúr die reine und angewandte Mathematik, 70, 71–102.

    Google Scholar 

  • Maltese, G. (1991). The rejection of the Ricci tensor in Einstein’s first tensorial theory of gravitation. Archive for History of Exact Sciences, 41(4), 363–381.

    Google Scholar 

  • Mehra, J. (1974). Einstein, Hilbert, and the theory of gravitation : Historical origins of general relativity theory. Dordrecht [et al.]: Reidel.

  • Nerlich, G. (1994). What spacetime explains: Metaphysical essays on space and time. Cambridge [et al.]: Cambridge University Press.

  • Norton, J. D. (1984). How Einstein found his field equations: 1912–1915. Historical studies in the physical sciences, 14, 253–316.

    Google Scholar 

  • Norton, J. (1985). What was Einstein’s principle of equivalence?. Studies in history and philosophy of science Part A, 16(3), 203–246.

    Google Scholar 

  • Norton, J. D. (1987). Einstein, the hole argument and the reality of space. In J. Forge (Ed.), Measurement, realism, and objectivity: Essays on measurement in the social and physical sciences.. Dordrecht/Boston/London: Kluwer.

    Google Scholar 

  • Norton, J. D. (1999). Geometries in collision: Einstein, Klein and Riemann. In J. Gray (Ed.), The symbolic universe. (pp. 128–144). Oxford: Oxford University Press.

    Google Scholar 

  • Norton, J. D. (2002). Einstein’s triumph over the spacetime coordinate system. In A paper presented in Honor of Roberto Torretti. Dialogos, 79, 253–262.

    Google Scholar 

  • Norton, J. D. (2003). General covariance, gauge theories, and the Kretschmann objection. In K. Brading & E. Castellani (Eds.), Symmetries in physics. philosophical reflections (pp. 110–123). Cambridge: Cambridge University Press.

    Google Scholar 

  • Norton, J. D. (1994). Why geometry is not conventional: The verdict of covariance principles. In U. Majer, H.-J. Schmidt (Eds.), Semantical aspects of spacetime theories. pp. 159–167. Mannheim [at al.]: BI-Wissenschaftsverl.

  • Ohanian, H. C. (1977). What is the principle of equivalence?. American Journal of Physics, 45, 903.

    Google Scholar 

  • Pais, A. (1982). Subtle is the lord: The science and the life of Albert Einstein. New York: Oxford University Press.

    Google Scholar 

  • Parrini, P. (2005). L’empirismo logico. Aspetti storici e prospettive teoriche. Roma: Carocci.

    Google Scholar 

  • Pesic, P. (ed.) (2007). Beyond geometry: Classic papers from Riemann to Einstein. Mineola, N.Y.: Dover Publications.

    Google Scholar 

  • Poincaré, H. (1882). Théorie des groupes fuchsiens. Acta Mathematica, 1, 1–62.

    Google Scholar 

  • Poincaré, H. (1887). Sur les hypothéses fondamentales de la géométrie. Bulletin de la Société mathématique de France, 15, 203–216.

    Google Scholar 

  • Poincaré, H. (1891). Les géométries non euclidiennes. Revue générale des sciences pures et appliquées, 2, 769–774.

    Google Scholar 

  • Portnoy, E. (1982). Riemann’s contribution to differential geometry. Historia Mathematica, 9(1), 1–18.

    Google Scholar 

  • Redhead, M. (2001). The intelligibility of the universe. In A. O’Hear (Ed.), Philosophy at the new Millennium.. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reich, K. (1992). Levi-Civitasche Parallelverschiebung, affiner Zusammenhang, Übertragungsprinzip: 1916/17–1922/23. Archiv für Geschichte der Philosophie, 44(1), 77–105.

    Google Scholar 

  • Reich, K. (1994). Die Entwicklung des Tensorkalküls: Vom absoluten Differentialkalkül zur Relativitätstheorie. Berlin: Birkhäuser.

    Google Scholar 

  • Reichenbach, H. (1920a). Die Einsteinsche Raumlehre. Die Umschau, 24, 402–405.

    Google Scholar 

  • Reichenbach, H. (1920b). Relativitätstheorie und Erkenntnis apriori. Berlin: Springer.

    Google Scholar 

  • Reichenbach, H. (1921). Der gegenwärtige Stand Der Relativitätsdiskussion. Eine kritische Untersuchung. Logos, 22(10), 316–378.

    Google Scholar 

  • Reichenbach, H. (1922). La signification philosophique de la théorie de la relativité. Revue philosophique de la France et de l’Étranger, 93, 5–61.

    Google Scholar 

  • Reichenbach, H. (1924). Axiomatik der relativistischen Raum–Zeit–Lehre. Braunschweig: Vieweg.

    Google Scholar 

  • Reichenbach, H. (1927). Von Kopernikus bis Einstein. Der Wandel unseres Weltbildes. Berlin: Ullstein.

    Google Scholar 

  • Reichenbach, H. (1928). Philosophie der Raum–Zeit–Lehre. Berlin and Leipzig: Walter de Gruyter. now in Reichenbach 1977, Vol. II.

  • Reichenbach, H. (1929a). Ziele und Wege der physikalischen Erkenntnis. In Handbuch der Physik, vol. 4: Allgemeine Grundlagen der Physik. pp. 1–80. Berlin: Springer.

  • Reichenbach, H. (1929b). Zur Einordnung des neuen Einsteinschen Ansatzes über Gravitation und Elektrizität. Zeitschrift für Physik, 59(9–10), 683–689.

    Google Scholar 

  • Reichenbach, H. (1949). The philosophical significance of the theory of relativity. In P. A. Schilpp (Ed.), Albert Einstein. philosopher-scientist (pp. 289–311). New York: Tudor.

    Google Scholar 

  • Reichenbach, H. (1951). The rise of scientific philosophy. Berkely/Los Angeles/London: University of California Press.

    Google Scholar 

  • Reichenbach, H. (1958). The philosophy of space and time. New York: Dover Publications.

    Google Scholar 

  • Reichenbach, H. (1965). The theory of relativity and a priori knowledge. Berkeley: University of California Press.

  • Reichenbach, H. (1977). Gesammelte Werke in 9 Bänden. Braunschweig; Wiesbaden: Vieweg.

    Google Scholar 

  • Reichenbach, H. (1978). Selected writings: 1909–1953. Dordrecht: Reidel.

  • Reichenbach, H. (2006). Defending Einstein: Hans Reichenbach’s writings on space, time, and motion. Cambridge: Cambridge University Press.

  • Reichenbächer, E. (1923). Träge, Schwere und felderzeugende Masse. Zeitschrift für Physik, 15, 276–279.

    Google Scholar 

  • Renn, J. (2007). The genesis of general relativity. Dordrecht: Springer.

    Google Scholar 

  • Ricci-Curbastro, G. (1892). Le calcul différentiel absolu. Bulletin des sciences mathématiques, 16, 167–189.

    Google Scholar 

  • Ricci-Curbastro, G. (1888). Delle derivazioni covarianti e controvarianti e del loro uso nella analisi applicata. In Studi editi dalla Università di Padova a commemorare l’ottavo centenario della Università di Bologna, Vol. 3, pp. 3–23. Padova: Tip. del Seminario.

  • Ricci-Curbastro, G. (1883). Principii di una teoria delle forme differenziali quadratiche. Annali di Matematica Pura ed Applicata 12, 135–167. now in Ricci-Curbarstro 1956-57, I.

  • Ricci-Curbastro, G. (1886). Sui parametri e gli invarianti delle forme quadratiche differenziali. Annali di Matematica Pura ed Applicata (1867–1897) 14, 1–11. now in Ricci-Curbarstro 1956–57, I.

  • Ricci-Curbastro, G. (1889). Sopra certi sistemi di funzioni. Atti Accad. Lincei 4/6, 112–118. now in Ricci-Curbarstro 1956–57, I.

  • Ricci-Curbastro, G. (1893). Di alcune applicazioni del Calcolo differenziale assoluto alla teoria delle forme differenziali quadratiche binarie e dei sistemi a due variabili. Atti dell’Istituto Veneto di scienze, lettere ed arti 7(4), 1336–1364. now in Ricci-Curbarstro 1956–57, I.

  • Ricci-Curbastro, G. (1956-57). Opere. Roma: Cremonese.

  • Riemann, B. (1854/1868). Ueber die Hypothesen, welche der Geometrie zu Grunde liegen (Aus dem Nachlass des Verfassers mitgetheilt durch R. Dedekind). Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13, 132–152.

  • Riemann, B. (1861/1876). Commentatio mathematica, qua respondere tentatur quaestioni ab Illma Academia Parisiensi propositae. In Bernhard Riemann’s Gesammelte Mathematische Werke. pp. 391–404. Weber, Heinrich.

  • Riemann, B. (1873). On the hypotheses which lie at the bases of geometry (translated by. Nature 8, 14–17; 36–37. translated by Clifford, William Kingdom.

  • Roth, L. (1942). Obituaries. Prof. Tullio Levi-Civita. Nature, 149, 266.

    Google Scholar 

  • Ryckman, T. (1992). (P)oint-(C)oincidence thinking. The ironical attachment of logical empiricism to general relativity. Studies in history and philosophy of modern physics, 23(3), 471–497.

    Google Scholar 

  • Ryckman, T. (2005). The reign of relativity. Philosophy in physics 1915–1925.. Oxford New York: Oxford University Press.

    Google Scholar 

  • Ryckman, T. (2007). Logical empiricism and philosophy of physics. In A. W. Richardson, & T. Uebel (Eds), The Cambridge companion to logical empiricism (1. publ. ed.)., pp. XI, 430 S. Cambridge [et al.]: Cambridge University Press.

  • Ryckman, T. (2008). Early philosophical interpretations of general relativity. The Stanford encyclopedia of philosophy: Fall 2008 Edition.

  • Rynasiewicz, R. (1999). Kretschmann’s analysis of covariance and relativity principles. In H. Goenner (Eds), The expanding worlds of general relativity. (pp. 431–462). Basel: Birkhäuser.

    Google Scholar 

  • Sauer, T. (1999). The relativity of discovery: Hilbert’s first note on the foundations of physics. Archive for History of Exact Sciences, 53, 529–575.

    Google Scholar 

  • Schlick, M. (1921). Review of Einstein 1921. Die Naturwissenschaften, 22, 435–436.

    Google Scholar 

  • Schlick, M. (1917a). Raum und Zeit in der gegenwärtigen Physik. Zur Einführung in das Verständnis der allgemeinen Relativitätstheorie. Die Naturwissenschaften 5, 161–167; 177–186. now in Schlick, 2006, Vol. II.

  • Schlick, M. (1917b). Raum und Zeit in der gegenwärtigen Physik. Zur Einführung in das Verständnis der allgemeinen Relativitätstheorie. Berlin: Springer now in Schlick, 2006, Vol. II.

  • Schlick, M. (2006). Gesamtausgabe. New York/Berlin: Springer.

  • Schlick, M., & Reichenbach , H. (1920–22). Correspondence 1920–22. http://echo.mpiwg-berlin.mpg.de/content/space/space/reichenbach1920-22

  • Scholz, E. (1982). Riemanns frühe Notizen zum Mannigfaltigkeitsbegriff und zu den Grundlagen der Geometrie. Archive for History of Exact Sciences, 27(3), 213–232.

    Google Scholar 

  • Scholz, E. (1992). Riemann’s vision of a new approach to geometry. In L. Boi, Flament & J.-M. Salanskis (Eds.), 1830-1930: A century of geometry. Epistemology, history and mathematics (pp. 22–34). New York/Berlin: Springer.

    Google Scholar 

  • Schouten, J. A. (1919). Die direkte Analysis zur neueren Relativitätstheorie. Verhandlingen Kgl. Akademie der Wetenschappen Amsterdam 12(6).

  • Schwarzschild, K. (1916). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich–Preussischen Akademie der Wissenschaften Sitzung vom 3. Februar 1916, 189–196.

  • Stachel, J. (1986). What can a physicist learn from the discovery of general relativity?. In R. Ruffini (Ed.), Proceedings of the fourth Marcel Grossmann meeting on recent developments in general relativity. (pp. 1857–1862). Amsterdam: North-Holland.

    Google Scholar 

  • Stachel, J. (1989). The rigidly rotating disk as the ‘missing link in the history of general relativity. In D. Howard & J. Stachel (Eds.), Einstein and the history of general relativity (Einstein Studies, Vol. 1). (pp. 48–62). Boston: Birkhäuser.

    Google Scholar 

  • Stachel, J. (2007). The story of Newstein or: Is gravity just another pretty force?. In M. Janssen, J. D. Norton, J. Renn, T. Sauer, & J. Stachel (Eds.), The genesis of general relativity, Vol. 250 of Boston studies in the philosophy of science. (pp. 1962–2000). Netherlands: Springer.

    Google Scholar 

  • Stachel, J. (1980/2002). Einstein’s search for general covariance, 1912–1915. In Einstein from "B" to "Z", pp. 301–337. Birkhäuser, Boston. The paper was first read at the ninth international conference on general relativity and gravitation, Jena in 1980.

  • Stachel, J. (1988/1992). The Cauchy problem in general relativity-the early years. In J. H. Eisenstaedt (Ed.), Studies in the history of general relativity: Based on the proceedings of the 2nd international conference on the history of general relativity, Luminy, France, 1988. pp. 407–418. Boston [et al.]: Birkhäuser.

  • Struik, D. J. (1989). Schouten, Levi-Civita and the emergence of tensor calculus. In D. E. Rowe & J. McCleary (Eds.), History of modern mathematics, Vol. 2: Institutions and applications. Boston: Academic Press.

    Google Scholar 

  • Struik, D. J. (1993). From Riemann to Ricci : The origins of the tensor calculus. In H. M. H. Srivastava (Ed.), Analysis, geometry and groups : A Riemann legacy volume, Hadronic Press collection of original articles.. Palm Harbor, Fla.: Hadronic Press.

    Google Scholar 

  • Synge, J. (1960). Relativity: The general theory. Amsterdam; New York: North-Holland Publishing Co.; Interscience Publishers.

    Google Scholar 

  • Synge, J. L. (1970). Talking about relativity. Amsterdam [u.a.]: North-Holland.

  • Tonolo, A. (1961). Sulle origini del Calcolo di Ricci. Annali di Matematica Pura ed Applicata, 53, 189–207.

    Google Scholar 

  • Torretti, R. (1983). Relativity and geometry. Oxford: Pergamon Press.

    Google Scholar 

  • Toscano, F. (2001). Luigi Bianchi, Gregorio Ricci Curbastro e la scoperta delle Identità di Bianchi. In Atti del XX Congresso Nazionale di Storia della Fisica e dell’Astronomia, pp. 353–370. Napoli: CUEN.

  • Weyl, H. (1920). Die Diskussion über die Relativitätstheorie. Die Umschau, 24, 609–611.

    Google Scholar 

  • Weyl, H. (1918a). Gravitation und Elektrizität. Sitzungsberichte der preuß. Akad. Berlin, Math. Kl.-, 465–480. now in WGA II, Doc. 31.

  • Weyl, H. (1918b). Raum, Zeit, Materie: Vorlesungen über allgemeine Relativitätstheorie. Berlin: Springer.

    Google Scholar 

  • Weyl, H. (1918c). Reine Infinitesimalgeometrie. Mathematische Zeitschrift 2, 384–411. now in WGA II, Doc. 30.

  • Weyl, H. (1919). Raum, Zeit, Materie: Vorlesungen über allgemeine Relativitätstheorie. Berlin: Springer. 2nd ed.

  • WGA: Weyl, H. (1968). Gesammelte Abhandlungen. Berlin: Springer.

  • Zund, J. (1983). Some comments on Riemann’s contributions to differential geometry. Historia Mathematica, 10, 84–89.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Don Howard for many insightful discussions and one of the anonymous referees for providing a detailed list of helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Giovanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovanelli, M. The Forgotten Tradition: How the Logical Empiricists Missed the Philosophical Significance of the Work of Riemann, Christoffel and Ricci. Erkenn 78, 1219–1257 (2013). https://doi.org/10.1007/s10670-012-9407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10670-012-9407-2

Keywords

Navigation