Skip to main content
Log in

Impact of acute handling stress, anaesthesia, and euthanasia on fish plasma biochemistry: implications for veterinary screening and metabolomic sampling

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Impacts of pre-sampling practices on fish plasma biochemistry may bias the outcome of a study if not considered within the general sampling strategy. Acute handling stresses can be imposed on fish during capture, and it is common practice to immobilise fish via sedation prior to obtaining blood samples for non-lethal extraction purposes, and/or to reduce stress, pain, or suffering before being euthanised. We investigated these potential influences using a Chinook salmon model (Oncorhynchus tshawytscha) by measuring levels of 119 biochemical targets comprising ions, metabolites, and enzymes in plasma. Multivariate analyses showed that 2 min of confinement with mild handling manipulation led to a significant departure from baseline metabolism, which was further exasperated during a prolonged 5-min challenge. These changes were characterised by a disruption in osmoregulation, a switch towards anaerobic metabolism, and shifts in ammonia recycling, among others. Sedation of fish with clove oil and AQUI-S® had major impacts on plasma biochemical profiles, with alterations signalling changes in glycolytic metabolism, respiratory modes, carbon flux through the TCA cycle, and lipid compartmentalisation. Sedation also enhanced levels of plasma amino acids, revealing a key difference between responses to handling stress and sedation. These results demonstrate that pre-harvest practices should be carefully managed during fish sampling for biochemical/metabolomic-based analyses, and if manipulations are essential, they should be standardised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerman PA, Forsyth RB, Mazur CF, Iwama GK (2000) Stress hormones and the cellular stress response in salmonids. Fish Physiol Biochem 23:327–336

    Article  CAS  Google Scholar 

  • Aggio R, Villas-Bôas SG, Ruggiero K (2011) Metab: an R package for high-throughput analysis of metabolomics data generated by GC-MS. Bioinformatics 27:2316–2318

    Article  CAS  PubMed  Google Scholar 

  • Alfaro AC, Young T (2018) Showcasing metabolomic applications in aquaculture: a review. Rev Aquac 10:135–152

    Article  Google Scholar 

  • American Fisheries Society (2014) Guidelines for the use of fishes in research. American fisheries society, use of fishes in research committee. Bethesda, Maryland, p 104

    Google Scholar 

  • Aragao C, Corte-Real J, Costas B et al (2008) Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup 1858). Amino Acids 34:143–148

    Article  CAS  PubMed  Google Scholar 

  • Bahrekazemi M, Yousefi N (2017) Plasma enzymatic, biochemical and hormonal responses to clove oil, 2-phenoxy ethanol, and MS-222 exposed to Caspian brown trout (Salmo trutta caspius, kessleri). Iran J Aquat Animal Health 3:47–60

    Article  Google Scholar 

  • Ballester-Lozano GF, Benedito-Palos L, Estensoro I, Sitjà-Bobadilla A, Kaushik S, Pérez-Sánchez J (2015) Comprehensive biometric, biochemical and histopathological assessment of nutrient deficiencies in gilthead sea bream fed semi-purified diets. Br J Nutr 114:713–726

    Article  CAS  PubMed  Google Scholar 

  • Bando K, Kawahara R, Kunimatsu T, Sakai J, Kimura J, Funabashi H, Seki T, Bamba T, Fukusaki E (2010) Influences of biofluid sample collection and handling procedures on GC–MS based metabolomic studies. J Biosci Bioeng 110:491–499

    Article  CAS  PubMed  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    Article  CAS  Google Scholar 

  • Becker AG, Parodi TV, Zeppenfeld CC, Salbego J, Cunha MA, Heldwein CG, Loro VL, Heinzmann BM, Baldisserotto B (2016) Pre-sedation and transport of Rhamdia quelen in water containing essential oil of Lippia alba: metabolic and physiological responses. Fish Physiol Biochem 42:73–81

    Article  CAS  PubMed  Google Scholar 

  • Bernini P, Bertini I, Luchinat C, Nincheri P, Staderini S, Turano P (2011) Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR 49:231–243

    Article  CAS  PubMed  Google Scholar 

  • Bonga SEW (1997) The stress response in fish. Physiol Rev 77:591–625

    Article  Google Scholar 

  • Braceland M, Houston K, Ashby A, Matthews C, Haining H, Rodger H, Eckersall PD (2017) Technical pre-analytical effects on the clinical biochemistry of Atlantic salmon (Salmo salar L.). J Fish Dis 40:29–40

    Article  CAS  PubMed  Google Scholar 

  • Chen H-H, Tseng YJ, Wang S-Y, Tsai YS, Chang CS, Kuo TC, Yao WJ, Shieh CC, Wu CH, Kuo PH (2015) The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes 39:1241–1248

    Article  CAS  Google Scholar 

  • Congleton JL, LaVoie WJ (2001) Comparison of blood chemistry values for samples collected from juvenile Chinook salmon by three methods. J Aquat Anim Health 13:168–172

    Article  Google Scholar 

  • Costas B, Conceição LE, Aragão C et al (2011) Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge: effects on non-specific immune parameters, plasma free amino acids and energy metabolism. Aquaculture 316:68–76

    Article  CAS  Google Scholar 

  • Gratton J, Phetcharaburanin J, Mullish BH, Williams HRT, Thursz M, Nicholson JK, Holmes E, Marchesi JR, Li JV (2016) Optimized sample handling strategy for metabolic profiling of human feces. Anal Chem 88:4661–4668

    Article  CAS  PubMed  Google Scholar 

  • Hernandes VV, Barbas C, Dudzik D (2017) A review of blood sample handling and pre-processing for metabolomics studies. Electrophoresis 38:2232–2241

    Article  CAS  PubMed  Google Scholar 

  • Hill J, Davison W, Forster M (2002) The effects of fish anaesthetics (MS222, metomidate and AQUI-S) on heart ventricle, the cardiac vagus and branchial vessels from Chinook salmon (Oncorhynchus tshawytscha). Fish Physiol Biochem 27:19–28

    Article  CAS  Google Scholar 

  • Hoffmayer ER, Parsons GR (2001) The physiological response to capture and handling stress in the Atlantic sharpnose shark, Rhizoprionodon terraenovae. Fish Physiol Biochem 25:277–285

    Article  Google Scholar 

  • Jepsen N, Davis LE, Schreck CB, Siddens B (2001) The physiological response of Chinook salmon smolts to two methods of radio-tagging. Trans Am Fish Soc 130:495–500

    Article  Google Scholar 

  • Kayashima T, Katayama T (2002) Oxalic acid is available as a natural antioxidant in some systems. Biochimica et Biophysica Acta (BBA)-General Subjects 1573:1–3

    Article  CAS  Google Scholar 

  • Kestin SC, Robb DH, van De Vis JW (2002) Protocol for assessing brain function in fish and the effectiveness of methods used to stun and kill them. Vet Rec 150:302–307

    Article  CAS  PubMed  Google Scholar 

  • Kiessling A, Johansson D, Zahl IH, Samuelsen OB (2009) Pharmacokinetics, plasma cortisol and effectiveness of benzocaine, MS-222 and isoeugenol measured in individual dorsal aorta-cannulated Atlantic salmon (Salmo salar) following bath administration. Aquaculture 286:301–308

    Article  CAS  Google Scholar 

  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp R, Palíková M, Mareš J, Navrátil S, Kubíček Z, Ziková A (2011) Haematological indices are modulated in juvenile carp, Cyprinus carpio L., exposed to microcystins produced by cyanobacterial water bloom. J Fish Dis 34:103–114

    Article  CAS  PubMed  Google Scholar 

  • Lawrence MJ, Jain-Schlaepfer S, Zolderdo AJ, Algera DA, Gilmour KM, Gallagher AJ, Cooke SJ (2018) Are 3 minutes good enough for obtaining baseline physiological samples from teleost fish? Can J Zool 96:774–786

    Article  CAS  Google Scholar 

  • Martins CL, Walker TI, Reina RD (2018) Stress-related physiological changes and post-release survival of elephant fish (Callorhinchus milii) after longlining, gillnetting, angling and handling in a controlled setting. Fish Res 204:116–124

    Article  Google Scholar 

  • Matthews M, Varga ZM (2012) Anesthesia and euthanasia in zebrafish. ILAR J 53:192–204

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq MY, Marçal RM, Champagne DL, van der Kooy F, Verpoorte R, Choi YH (2014) Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics. Planta Med 80:1227–1233

    Article  CAS  PubMed  Google Scholar 

  • Neiffer DL, Stamper MA (2009) Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR J 50:343–360

    Article  CAS  PubMed  Google Scholar 

  • Overmyer KA, Thonusin C, Qi NR, Burant CF, Evans CR (2015) Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model. PLoS One 10:e0117232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priborsky J, Velisek J (2018) A review of three commonly used fish anesthetics. Rev Fish Sci & Aquac 26:417–442

    Article  Google Scholar 

  • Rehulka J (2003) Haematological analyses in rainbow trout Oncorhynchus mykiss affected by viral haemorrhagic septicaemia (VHS). Dis Aquat Org 56:185–193

    Article  CAS  PubMed  Google Scholar 

  • Robb DH, Wotton SB, McKinstry JL et al (2000) Commercial slaughter methods used on Atlantic salmon: determination of the onset of brain failure by electroencephalography. Vet Rec 147:298–303

    Article  CAS  PubMed  Google Scholar 

  • Rojas V, Morales-Lange B, Avendaño-Herrera R, Poblete-Morales M, Tapia-Cammas D, Guzmán F, Marshall SH, Mercado L (2018) Detection of muscle-specific creatine kinase expression as physiological indicator for Atlantic salmon (Salmo salar L) skeletal muscle damage. Aquaculture 496:66–72

    Article  CAS  Google Scholar 

  • Sattari A, Mirzargar S, Abrishamifar A et al (2009) Comparison of electroanesthesia with chemical anesthesia (MS222 and clove oil) in rainbow trout (Oncorhynchus mykiss) using plasma cortisol and glucose responses as physiological stress indicators. Asian J Animal Vet Adv 4:306–313

    Article  CAS  Google Scholar 

  • Smart KF, Aggio RB, Van Houtte JR, Villas-Bôas SG (2010) Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography–mass spectrometry. Nat Protoc 5(10):1709–1729

  • Sneddon LU (2012) Clinical anesthesia and analgesia in fish. J Exotic Pet Med 21:32–43

    Article  Google Scholar 

  • Schreck CB, Tort L, Farrell AP, Brauner CJ (2016) Biology of stress in fish. USA. Academic Press, Cambridge MA

    Google Scholar 

  • Sopinka NM, Donaldson MR, O’Connor CM et al (2016) Stress indicators in fish. In: Fish physiology. Academic Press, pp 405–462

  • Toni C, Becker AG, Simões LN, Pinheiro CG, de Lima Silva L, Heinzmann BM, Caron BO, Baldisserotto B (2014) Fish anesthesia: effects of the essential oils of Hesperozygis ringens and Lippia alba on the biochemistry and physiology of silver catfish (Rhamdia quelen). Fish Physiol Biochem 40:701–714

    CAS  PubMed  Google Scholar 

  • Tort L (2011) Stress and immune modulation in fish. Dev Comp Immunol 35:1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Trushenski JT, Bowker JD, Gause BR, Mulligan BL (2012) Chemical and electrical approaches to sedation of hybrid striped bass: induction, recovery, and physiological responses to sedation. Trans Am Fish Soc 141:455–467

    Article  CAS  Google Scholar 

  • Velisek J, Stara A, Zuskova E, Svobodova Z (2013) Use of biometric, hematologic, and plasma biochemical variables, and histopathology to assess the chronic effects of the herbicide prometryn on common carp. Vet Clin Pathol 42:508–515

    Article  CAS  PubMed  Google Scholar 

  • Villas-Bôas SG, Smart KF, Sivakumaran S, Lane GA (2011) Alkylation or silylation for analysis of amino and non-amino organic acids by GC-MS? Metabolites 1(1):3–20

  • Wells R, McIntyre R, Morgan A et al (1986) Physiological stress responses in big gamefish after capture: observations on plasma chemistry and blood factors. Comp Biochem Physiol A, Comp Physiol 84:565–571

    Article  CAS  Google Scholar 

  • Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin P, Lehmann R, Xu G (2015) Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem 407:4879–4892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa H, Ishida Y, Ueno S, Mitsuda H (1988) Changes in depth of anesthesia of the carp anesthetized with a constant level of CO2. Nippon Suisan Gakkaishi 54:457–462

    Article  Google Scholar 

  • Young T, Alfaro AC (2018) Metabolomic strategies for aquaculture research: a primer. Rev Aquac 10:26–56

    Article  Google Scholar 

  • Zahl IH, Kiessling A, Samuelsen OB, Olsen RE (2010) Anesthesia induces stress in Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus). Fish Physiol Biochem 36:719–730

    Article  CAS  PubMed  Google Scholar 

  • Zahl IH, Samuelsen O, Kiessling A (2012) Anaesthesia of farmed fish: implications for welfare. Fish Physiol Biochem 38:201–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like thank David Sutherland from Clearwater Hatchery (Mt Cook Alpine Salmon) for facilitating on-site sampling and providing fish for this study, and Erica Zarate and Saras Green from the University of Auckland for their technical support during sample analysis. This research was funded by the Ministry of Business, Innovation and Employment (Feed-Efficient Salmon for the Future MBIE Programme: CAWX1606).

Author information

Authors and Affiliations

Authors

Contributions

TY and ACA designed the research. TY, ACA, SA, LF, and SM performed the experiments. TY and SW processed the samples and contributed to the acquisition of data. TY, JS, and RL interpreted the results. TY drafted the manuscript. All authors provided substantial contributions to the study and have read and approved the submitted manuscript.

Corresponding author

Correspondence to Andrea C. Alfaro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

ESM 2

(XLSX 19 kb)

ESM 3

(DOCX 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, T., Walker, S.P., Alfaro, A.C. et al. Impact of acute handling stress, anaesthesia, and euthanasia on fish plasma biochemistry: implications for veterinary screening and metabolomic sampling. Fish Physiol Biochem 45, 1485–1494 (2019). https://doi.org/10.1007/s10695-019-00669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00669-8

Keywords

Navigation