Skip to main content
Log in

The Madelung Picture as a Foundation of Geometric Quantum Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Despite its age, quantum theory still suffers from serious conceptual difficulties. To create clarity, mathematical physicists have been attempting to formulate quantum theory geometrically and to find a rigorous method of quantization, but this has not resolved the problem. In this article we argue that a quantum theory recursing to quantization algorithms is necessarily incomplete. To provide an alternative approach, we show that the Schrödinger equation is a consequence of three partial differential equations governing the time evolution of a given probability density. These equations, discovered by Madelung, naturally ground the Schrödinger theory in Newtonian mechanics and Kolmogorovian probability theory. A variety of far-reaching consequences for the projection postulate, the correspondence principle, the measurement problem, the uncertainty principle, and the modeling of particle creation and annihilation are immediate. We also give a speculative interpretation of the equations following Bohm, Vigier and Tsekov, by claiming that quantum mechanical behavior is possibly caused by gravitational background noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. “In a recent paper Heisenberg puts forward a new theory, which suggests that it is not the equations of classical mechanics that are in any way at fault, but that the mathematical operations by which physical results are deduced from them require modification.” [1]

  2. Here we use the usual notation for vector calculus on \(\mathbb {R}^3\) with standard metric \(\delta \).

  3. “Es besteht somit Aussicht auf dieser Basis die Quantentheorie der Atome zu erledigen.” [28, p. 326]; translation by author: “There is hence a prospect to complete the quantum theory of atoms on this basis.”

  4. We believe that the lack of physicality is a consequence of neglecting spin in the Schrödinger theory. We refer to [40, 41] for an elaboration on this point of view.

  5. For the same reason as in the case of Newtonian spacetimes, it is sensible to assume spacetimes to be also space-oriented.

  6. Physically, a test particle is an almost point-like mass (relatively speaking), whose influence on the spacetime geometry can be neglected in the physical model of consideration.

  7. For a discussion on this interpretation and why alternative ones should be excluded, see e.g. [47, §4.2].

  8. Note that only the \((E<0)\)-solutions are admissible, as the other ones are not \(L^2\)-integrable (c.f. [58, §36]).

  9. Note that this can already not be the case for the momentum operator \(\hat{\vec {p}}\), but can only hold true for its “components” \(\hat{p}_i\).

  10. Usually this is called the Hamiltonian operator, but we take the Hamiltonian to be (3.6g). Considering \(\i \hbar \, \partial /\partial t\) as the energy operator is more natural from the relativistic point of view.

  11. \(\Psi _t\) vanishes on \(\partial \Omega _t\)’ means that for any sequence \(({\vec {x}}_n)_{n \in \mathbb {N}}\) in \(\Omega _t\) converging to \({{\vec {x}}} \in \partial \Omega _t \subset \mathbb {R}^3\), we have \(\lim \limits _{n \rightarrow \infty } \Psi _t \left( {{\vec {x}}}_n\right) = 0\).

  12. On a technical note, to assure convergence of (5.2), we also require that the function

    $$\begin{aligned} N \rightarrow \mathbb {R}:{{\vec {x}}} \rightarrow \sup _{t \in I} |\left( \frac{\partial \rho }{\partial t} \bigl (t, \vec \Phi _t \left( {{\vec {x}}}\right) \bigr ) + \left( \nabla \cdot \left( \rho {\vec {X}} \right) \right) \bigl (t, \vec \Phi _t \left( {{\vec {x}}}\right) \bigr ) \right) \, \det \biggl ( \biggl (\frac{\partial \vec \Phi _t}{\partial {{\vec {x}}}} \biggr ) \left( {{\vec {x}}} \right) \biggr ) | \end{aligned}$$

    is bounded and integrable over N. This is trivially true if the continuity equation holds.

  13. It should be noted that there have already been attempts to find a stochastic formulation of the Madelung equations within the so-called theory of ’stochastic mechanics’, developed mainly by Nelson. See e.g. [70] for a review.

  14. This is another instance where the von Neumann approach to probability (see Sect. 4) leads to questionable results: Why should one change the probability theory in the large mass-approximation?

  15. This means that Alice does not observe any gravitational lensing or deviation from straight-line motion of macroscopic, unaccelerated objects.

References

  1. Dirac, P.A.M.: The fundamental equations of quantum mechanics. Philos. R. Soc. A 109(752), 642–653 (1925). doi:10.1098/rspa.1925.0150

    ADS  MATH  Google Scholar 

  2. Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 33(1), 879–893 (1925). doi:10.1007/BF01328377

    Article  ADS  MATH  Google Scholar 

  3. Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. van Hove, L.: Sur certaines représentations unitaires d’un groupe infini de transformations. Mem. de l’Acad. Roy. de Belgique (Classe des Sci.) 26, 61–102 (1951)

    MATH  Google Scholar 

  5. Abraham, R.H., Marsden, J.E.: Foundations of Mechanics. Benjamin-Cummings, Reading (1978)

    MATH  Google Scholar 

  6. Woodhouse, N.M.J.: Geometric Quantization, 2nd edn. Oxford University Press, New York (1991)

    MATH  Google Scholar 

  7. Echeverría-Enríquez, A., Muñoz-Lecanda, M.C., Román-Roy, N., Victoria-Monge, C.: Mathematical foundations of geometric quantization. Extracta Math. 13(2), 135–238 (1998). arXiv:math-ph/9904008v1

    MathSciNet  MATH  Google Scholar 

  8. Segal, I.E.: Quantization of nonlinear systems. J. Math. Phys. 1(6), 468–488 (1960). doi:10.1063/1.1703683

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kirillov, A.A.: Unitary representations of nilpotent lie groups. Russ. Math. Surv. 17(4), 53–104 (1962). doi:10.1070/RM1962v017n04ABEH004118

    Article  MathSciNet  MATH  Google Scholar 

  10. Kostant, B.: Quantization and Unitary Representations, Lectures in Modern Analysis and Applications III. In: Taam, C.T. (ed.) Lecture Notes in Mathematics, pp. 87–208. Springer, Berlin (1970). doi:10.1007/BFb0079068

    Google Scholar 

  11. Souriau, J.-M.: Structure des Systémes Dynamique. Dunod, Paris (1969)

    Google Scholar 

  12. Hall, B.C.: Quantum Theory for Mathematicians. Graduate Texts in Mathematics, vol. 267. Springer, New York (2013)

    MATH  Google Scholar 

  13. Kuhn, T.S.: The Structure of Scientific Revolutions, 2nd edn. The University of Chicago Press, Chicago (1970)

    Google Scholar 

  14. Pajares, F.: The structure of scientific revolutions by Thomas S. Kuhn: a synopsis from the original. http://www.uky.edu/~eushe2/Pajares/kuhnsyn.html. Accessed 23 June 2015

  15. Bohr, N.: On the constitution of atoms and molecules. Philos. Mag. 26(151), 1–25 (1913). doi:10.1080/14786441308634955

    Article  MATH  Google Scholar 

  16. Sommerfeld, A.: Zur Theorie der Balmerschen Serie, Sitzber. K. Bayer. Akad. 425–500 (1915)

  17. Bohr, N.: Über die Serienspektra der Elemente. Z. Phys. 2(5), 423–469 (1920). doi:10.1007/BF01329978

    Article  ADS  Google Scholar 

  18. Heisenberg, W.: Development of Concepts in the History of Quantum Theory. In: Mehra, J. (ed.) The Physicist’s Conception of Nature, pp. 2264–275. D. Reidel Publishing, Dordrecht (1973). doi:10.1007/978-94-010-2602-4.11

    Google Scholar 

  19. Schrödinger, E.: Quantisierung als Eigenwertproblem: Erste Mitteilung. Ann. Phys.-Leipzig 79(6), 361–376 (1926)

  20. von Neumann, J.: Mathematical Foundations of Quantum Mechanics, Investigations in Physics, vol. 2. Princeton University Press, Princeton (1955)

    Google Scholar 

  21. Weinberg, S.: The Quantum Theory of Fields: Foundations, vol. 1. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  22. Woit, P.: Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law, 2nd edn. Basic Books, New York (2007)

    MATH  Google Scholar 

  23. Waldmann, S.: Poisson-Geometrie und Deformationsquantisierung. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  24. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9(3) (2006). doi:10.12942/lrr-2006-3. http://www.livingreviews.org/lrr-2006-3

  25. Kriele, M.: Spacetime: Foundations of General Relativity and Differential Geometry, 1st edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  26. Schrödinger, E.: Quantisierung als Eigenwertproblem: Zweite Mitteilung. Ann. Phys.-Leipzig 79(6), 489–527 (1926)

    Article  MATH  Google Scholar 

  27. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049–1070 (1926). doi:10.1103/PhysRev.28.1049

    Article  ADS  MATH  Google Scholar 

  28. Madelung, E.: Quantentheorie in hydrodynamischer form. Z. Phys. 40(3–4), 322–326 (1927). doi:10.1007/BF01400372

    Article  ADS  MATH  Google Scholar 

  29. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics, 2nd edn. Springer, New York (1990)

    Book  MATH  Google Scholar 

  30. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Z. Phys. 37(12), 863–867 (1926). doi:10.1007/BF01397477; English transl., J.A. Wheeler and W.H. Zurek, Quantum Theory and Measurement (1983) 52–55

  31. Bohm, D.: A suggested Interpretation of the quantum theory in terms of “Hidden” variables. I. Phys. Rev. 85(2), 166–179 (1952). doi:10.1103/PhysRev.85.166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. II. Phys. Rev. 85(2), 180–193 (1952). doi:10.1103/PhysRev.85.180

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Tsekov, R.: Bohmian mechanics versus madelung quantum hydrodynamics. Ann. Univ. Sofia, Fac. Phys. SE 112–119 (2012). doi:10.13140/RG.2.1.3663.8245

  34. Holland, P.: Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation. Ann. Phys. N. Y. 315(2), 505–531 (2005). doi:10.1016/j.aop.2004.09.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Jánossy, L., Ziegler, M.: The hydrodynamical model of wave mechanics I: the motion of a single particle in a potential field. Acta Phys. Hung. 16(1), 37–48 (1963). doi:10.1007/BF03157004

    Article  MathSciNet  Google Scholar 

  36. Jánossy, L., Ziegler-Náray, M.: The hydrodynamical model of wave mechanics II: the motion of a single particle in an external electromagnetic field. Acta Phys. Hung. 16(4), 345–353 (1964). doi:10.1007/BF03157974

    Article  MathSciNet  Google Scholar 

  37. Jánossy, L., Ziegler-Náray, M.: The hydrodynamical model of wave mechanics III: electron spin. Acta Phys. Hung. 20(3), 233–251 (1966). doi:10.1007/BF03158167

  38. Takabayasi, T.: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8(2), 143–182 (1952). doi:10.1143/ptp/8.2.143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Wallstrom, T.C.: Inequivalence between the Schrödinger equation and the madelung hydrodynamic equations. Phys. Rev. A 49(3), 1613–1617 (1994). doi:10.1103/Phys-RevA.49.1613

    Article  ADS  MathSciNet  Google Scholar 

  40. Gurtler, R., Hestenes, D.: Consistency in the formulation of the Dirac, Pauli, and Schrödinger theories. J. Math. Phys. 16(3), 573–584 (1975). doi:10.1063/1.522555

    Article  ADS  Google Scholar 

  41. Hestenes, D., Gurtler, R.: Local observables in quantum theory. Am. J. Phys. 39(9), 1028–1038 (1971). doi:10.1119/1.1986364

    Article  ADS  MathSciNet  Google Scholar 

  42. Tsekov, R.: Dissipative and quantum mechanics. New Adv. Phys. 3: 35–44 (2009). arXiv:0903.0283v5

  43. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96(1), 208–216 (1954). doi:10.1103/PhysRev.96.208

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Holland, P.R.: The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  45. Wallstrom, T.C.: On the derivation of the Schrödinger equation from stochastic mechanics. Found. Phys. Lett. 2(2), 113–126 (1989). doi:10.1007/BF00696108

    Article  MathSciNet  Google Scholar 

  46. Rudolph, G., Schmidt, M.: Differential Geometry and Mathematical Physics: Part I. Manifolds, Lie Groups and Hamiltonian Systems. Theoretical and Mathematical Physics. Springer, Dordrecht (2013). doi:10.1007/978-94-007-5345-7

    Book  MATH  Google Scholar 

  47. Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  48. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, San Francisco (2004)

    MATH  Google Scholar 

  49. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  50. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)

    Book  Google Scholar 

  51. Reddiger, M.: An Observer’s View on Relativity: Space-Time Splitting and Newtonian Limit. Thesis, in preparation (2017)

  52. Poor, W.A.: Differential Geometric Structures. Dover, Mineola (2007)

    Google Scholar 

  53. O’Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity. Academic Press, San Diego (1983)

    MATH  Google Scholar 

  54. Acheson, D.J.: Elementary Fluid Dynamics. Clarendon Press, Oxford (1990)

    MATH  Google Scholar 

  55. Weber, H.: Ueber eine Transformation der hydrodynamischen Gleichungen. J. Reine Angew. Math. 68, 286–292 (1867)

    MathSciNet  Google Scholar 

  56. MacRobert, T.M.: Spherical Harmonics: An Elementary Treatise on Harmonic Functions with Applications, 3rd edn. Pergamon Press, Oxford (1967)

    MATH  Google Scholar 

  57. Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing, New York (1965)

    MATH  Google Scholar 

  58. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory: Course of Theoretical Physics, vol. 3. Butterworth-Heinemann, Oxford (1977)

    Google Scholar 

  59. Jüngel, A., Mariani, M.C., Rial, D.: Local existence of solutions to the transient quantum hydrodynamic equations. Math. Mod. Meth. Appl. S. 12(4), 485–495 (2002). doi:10.1142/S0218202502001751

    Article  MathSciNet  MATH  Google Scholar 

  60. Zak, M.: The origin of randomness in quantum mechanics. Electron. J. Theor. Phys. 11(31), 149–164 (2014)

    Google Scholar 

  61. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115(3), 485–491 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Becnel, J., Sengupta, A.: The Schwartz space: tools for quantum mechanics and infinite dimensional. Mathematics 3(2), 527–562 (2015). doi:10.3390/math3020527

    Article  MATH  Google Scholar 

  63. Kolmogoroff, A.: Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik und Ihrer Grenzgebiete, Springer, Berlin (1933); English transl. in Foundations of the Theory of Probability, 2nd ed., translated by N. Morrison, Chelsea Publishing, New York (1956)

  64. Klenke, A.: Probability Theory: A Comprehensive Course. Springer, Berlin (2007)

    MATH  Google Scholar 

  65. Stein, E.M., Shakarchi, R.: Fourier Analysis: An Introduction. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  66. Rédei, M., Summers, S.J.: Quantum probability theory. Stud. Hist. Philos. Mod. Phys. 38(2): 390–417 (2007). doi:10.1016/j.shpsb.2006.05.006. arXiv: quant-ph/0601158

  67. Streater, R.F.: Classical and quantum probability. J. Math. Phys. 41(6), 3556–3603 (2000). doi:10.1063/1.533322

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Ehrenfest, P.: Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45(7), 455–457 (1927). doi:10.1007/BF01329203

    Article  ADS  MATH  Google Scholar 

  69. Fleming, W.H.: Functions of Several Variables. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (1977)

    Book  MATH  Google Scholar 

  70. Nelson, E.: Review of stochastic mechanics. J. Phys. Conf. Ser. 361, 012011 (2012). doi:10.1088/1742-6596/361/1/012011

    Article  Google Scholar 

  71. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935). doi:10.1103/PhysRev.47.777

    Article  ADS  MATH  Google Scholar 

  72. McKay, D.: A simple proof that the curl defined as circulation density is a vector-valued function, and an alternative approach to proving Stoke’s Theorem. Adv. Pure Math. 2(1), 33–35 (2012). doi:10.4236/apm.2012.21007

    Article  MATH  Google Scholar 

  73. Salesi, G.: Spin and madelung fluid. Mod. Phys. Lett. A 11(22), 1815–1823 (1996). doi:10.1142/S0217732396001806

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Spera, M.: On some hydrodynamical aspects of quantum mechanics. Cent. Eur. J. Phys. 8(1), 42–48 (2010). doi:10.2478/s11534-009-0070-4. arXiv: 0902.0691

  75. Takabayasi, T.: Vortex, spin and triad for quantum mechanics of spinning particle. I. Prog. Theor. Phys. 70(1), 1–17 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Bohm, D., Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation (A). Nuovo Cim. 1, 48–66 (1955). doi:10.1007/BF02743528

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Bohm, D., Schiller, R.: A causal Interpretation of the Pauli Equation (B). Nuovo Cim. 1, 67–91 (1955). doi:10.1007/BF02743529

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Nykamp, D.Q.: Subtleties about curl (2015). http://mathinsight.org/curlsubtleties

  79. National Committee for Fluid Mechanics Films (NCFMF), Vorticity, MIT, 1961. Video. http://web.mit.edu/hml/ncfmf.html

  80. Baggott, J.: The Meaning of Quantum Theory: A Guide for Students of Chemistry and Physics. Oxford University Press, New York (1992)

    Google Scholar 

  81. Couder, Y., Fort, E., Gautier, C.-H., Boudaoud, A.: From bouncing to floating: noncoalescence of drops on a fluid. Phys. Rev. Lett. 94(17), 177801 (2005). doi:10.1103/PhysRevLett.94.177801

    Article  ADS  Google Scholar 

  82. Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Dynamical phenomena: walking and orbiting droplets. Nature 437, 208 (2005). doi:10.1038/437208a

    Article  ADS  Google Scholar 

  83. Protiére, S., Boudaoud, A., Couder, Y.: Particle wave association on a fluid interface. J. Fluid Mech. 554, 85–108 (2006). doi:10.1017/S0022112006009190

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Bush, J.W.M.: Quantum mechanics writ large. Proc. Natl. Acad. Sci. USA 107(41), 17455–17456 (2010). doi:10.1073/pnas.1012399107

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97(15), 154101 (2006). doi:10.1103/Phys-RevLett.97.154101

    Article  ADS  Google Scholar 

  86. Eddi, A., Fort, E., Moisy, F., Couder, Y.: Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett. 102(24), 240401 (2009). doi:10.1103/PhysRevLett.l02.240401

    Article  ADS  Google Scholar 

  87. Michelson, A.A., Morley, E.: On the relative motion of the earth and the luminiferous ether. Am. J. Sci. 34(203), 333–345 (1887)

    Article  MATH  Google Scholar 

  88. Einstein, A., Minkowski, H.: The Principle of Relativity: Original Papers by A. Einstein and H. Minkowski. Calcutta University Press, Calcutta (1920)

    MATH  Google Scholar 

  89. Sachs, R.K., Wu, H.: General Relativity for Mathematicians. Graduate Texts in Mathematics, vol. 48. Springer, New York (1977)

    MATH  Google Scholar 

  90. Delphenich, D.H.: The geometric origin of the madelung potential (2002) arXiv:gr-qc/0211065v1

  91. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150(4), 1079–1085 (1966). doi:10.1103/PhysRev.150.1079

    Article  ADS  Google Scholar 

  92. Bondi, S.H.: Gravitational waves in general relativity XVI. Standing waves. Proc. R. Soc. Lon. Ser.-A 460(2042), 463–470 (2004). doi:10.1098/rspa.2003.1176

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. van Raamsdonk, M.: Building up spacetime with quantum entanglement. Int. J. Mod. Phys. A 19(14), 2429–2435 (2010). doi:10.1142/S0218271810018529

    Article  MATH  Google Scholar 

  94. Wheeler, J.A.: Geometrodynamics. Topics of Modern Physics, vol. 1. Academic Press, New York (1962)

    MATH  Google Scholar 

  95. Wheeler, J.A.: Einsteins Vision: Wie steht es heute mit Einsteins Vision, alles als Geometrie aufzufassen?. Springer, Berlin (1968)

    Book  MATH  Google Scholar 

  96. Nicolić, H.: Quantum mechanics: myths and facts. Found. Phys. 37, 1563–1611 (2007). doi:10.1007/s10701-007-9176-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J., Couder, Y.: Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. USA 107(41), 17515–17520 (2010). doi:10.1073/pnas.1007386107

    Article  ADS  Google Scholar 

  98. Weinberg, S.: The Quantum Theory of Fields: Modern Applications, vol. 2. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  99. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  100. Bohm, D., Hiley, B.J., Kaloyerou, P.N.: An ontological basis for the quantum theory. Phys. Rep. 144(6), 321–375 (1987). doi:10.1016/0370-1573(87)90024-X

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the following people who have made this work possible in various ways: Ina, Heiko and Marcel Reddiger, Helmut and Erika Winter, Erich and Rita Reddiger, Katie, Timothy and Camden Pankratz, Whitney Janzen-Pankratz, Viktor Befort, Viola Elsenhans, Adam Murray, Marcus Bugner, Alexander Gietelink Oldenziel, Christof Tinnes, Knut Schnürpel, Thomas Kühn, Arwed Schiller, Gerd Rudolph, Dennis Dieks, Gleb Arutyunov, Wolfgang Hasse and Maaneli Derakhshani. Moreover, I am grateful to Adam Murray and Markus Fenske for their help in correcting the manuscript and the two anonymous referees for their constructive comments. Thanks goes also to the dear fellow who wrote the Wikipedia article on the Madelung equations, without which I might have not stumbled upon them and realized their importance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Reddiger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddiger, M. The Madelung Picture as a Foundation of Geometric Quantum Theory. Found Phys 47, 1317–1367 (2017). https://doi.org/10.1007/s10701-017-0112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0112-5

Keywords

Navigation