Skip to main content
Log in

A genetic strategy involving a glycosyltransferase promoter and a lipid translocating enzyme to eliminate cancer cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The most common therapeutic strategy for the treatment of cancer uses antimetabolites, which block uncontrolled division of cancer cells and kill them. However, such antimetabolites also kill normal cells, thus yielding detrimental side effects. This emphasizes the need for an alternative therapy, which would have little or no side effects. Our approach involves designing genetic means to alter surface lipid determinants that induce phagocytosis of cancer cells. The specific target of this strategy has been the enzyme activity termed aminophospholipid translocase (APLT) or flippase that causes translocation of phosphatidylserine (PS) from the outer to the inner leaflet of the plasma membrane in viable cells. Efforts to identify the enigmatic, plasma membrane APLT of mammalian cells have led investigators to some P-type ATPases, which have often proven to be the APLT of internal membranes rather than the plasma membrane. By measuring kinetic parameters for the plasma membrane APLT activity, we have shown that the P-type ATPase Atp8a1 is the plasma membrane APLT of the tumorigenic N18 cells, but not the non-tumorigenic HN2 (hippocampal neuron × N18) cells. Targeted knockdown of this enzyme causes PS externalization in the N18 cells, which would trigger phagocytic removal of these cells. But how would we specifically express the mutants or antisense Atp8a1 in the cancer cells? This has brought us to a glycosyltransferase, GnT-V, which is highly expressed in the transformed cells. By using the GnT-V promoter to drive a luciferase reporter gene we have demonstrated a dramatic increase in luciferase expression selectively in tumor cells. The described strategy could be tested for the removal of cancer cells without the use of antimetabolites that often kill normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3
Fig. 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. Zwaal, R.F.A., Schroit, R.A.: Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 89, 1121–1132 (1997)

    PubMed  CAS  Google Scholar 

  2. Ikeda, M., Kihara, A., Igarashi, Y.: Lipid asymmetry of the eukaryotic plasma membrane: functions and related enzymes. Biol. Pharm. Bull. 29, 1542–1546 (2006). doi:10.1248/bpb.29.1542

    Article  PubMed  CAS  Google Scholar 

  3. Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L., Hensen, P.M.: Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992)

    PubMed  CAS  Google Scholar 

  4. Fadok, V.A., Savill, J.S., Haslett, C., Bratton, D.L., Doherty, D.E., Campbell, P.A., Henson, P.M.: Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol. 149, 4029–4035 (1992)

    PubMed  CAS  Google Scholar 

  5. Daleke, D.L.: Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res. 44(2), 233–242 (2003). doi:10.1194/jlr.R200019-JLR200

    Article  PubMed  CAS  Google Scholar 

  6. Fadok, V.A., Bratton, D.L., Rose, D.M., Pearson, A., Ezekewitz, A.B., Henson, P.M.: A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 405, 85–90 (2000). doi:10.1038/35011084

    Article  PubMed  CAS  Google Scholar 

  7. Fadok, V.A., Cathelineau, A.D., Daleke, D.L., Henson, P.M., Bratton, D.L.: Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077 (2001). doi:10.1074/jbc.M003649200

    Article  PubMed  CAS  Google Scholar 

  8. Adayev, T., Estephan, R., Meserole, S., Mazza, B., Yurkow, E.J., Banerjee, P.: Externalization of phosphatidylserine may not be an early signal of apoptosis in neuronal cells, but only the phosphatidylserine-displaying apoptotic cells are phagocytosed by microglia. J. Neurochem. 71, 1854–1864 (1998)

    Article  PubMed  CAS  Google Scholar 

  9. Witting, A., Müller, P., Herrmann, A., Kettenmann, H., Nolte, C.: Phagocytic clearance of apoptotic neurons by microglia/brain macrophages in vitro: involvement of lectin-, integrin-, and phosphatidylserine-mediated recognition. J. Neurochem. 75, 1060–1070 (2000). doi:10.1046/j.1471-4159.2000.0751060.x

    Article  PubMed  CAS  Google Scholar 

  10. Tang, X., Halleck, M.S., Schlegel, R.A., Williamson, P.: A subfamily of P-type ATPases with aminophospholipid transporting activity. Science. 272, 1495–1497 (1996). doi:10.1126/science.272.5267.1495

    Article  PubMed  CAS  Google Scholar 

  11. Chen, H.Y., Ingram, M.F., Rosal, P.H., Graham, T.R.: Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J. Cell Biol. 147, 1223–1236 (1999). doi:10.1083/jcb.147.6.1223

    Article  PubMed  CAS  Google Scholar 

  12. Daleke, D., Lyles, J.: Identification and purification of aminophospholipid flippases. Biochim. Biophys. Acta. 1486, 108–127 (2000)

    PubMed  CAS  Google Scholar 

  13. Pomorski, R., Lombardi, R., Riezman, H., Devaux, P.F., van Meer, G., Holthuis, J.C.: Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol. Biol. Cell 14, 1240–1254 (2003). doi:10.1091/mbc.E02-08-0501

    Article  PubMed  CAS  Google Scholar 

  14. Halleck, M.S., Pradhan, D., Blackman, C., Berkes, C., Williamson, P., Schlegel, R.A.: Multiple members of a third subfamily of P-type ATPases identified by genomic sequences and ESTs. Genome Res. 8, 354–361 (1998)

    PubMed  CAS  Google Scholar 

  15. Halleck, M.S., Pradhan, D., Blackman, C., Berkes, C., Williamson, P., Schlegel, R.A.: Differential expression of putative transbilayer amphipath transporters. Physiol. Genomics. 1, 139–150 (1999)

    PubMed  CAS  Google Scholar 

  16. Ding, J., Wu, Z., Crider, B.P., Ma, Y., Li, X., Slaughter, C., Gong, L., Xie, X.-S.: Identification and functional expression of four isoforms of ATPase II, the putative aminophospholipid translocase. J. Biol. Chem. 275, 23378–23386 (2000). doi:10.1074/jbc.M910319199

    Article  PubMed  CAS  Google Scholar 

  17. Paterson, J.K., Renkema, K., Burden, L., Halleck, M.S., Schlegel, R.A., Williamson, P., Daleke, D.L.: Lipid specific activation of the murine P4-ATPase Atp8a1 (ATPase II). Biochemistry. 45(16), 5367–5376 (2006). doi:10.1021/bi052359b

    Article  PubMed  CAS  Google Scholar 

  18. Zullig, S., et al.: Aminophospholipid translocase TAT-1 promotes phosphatidylserine exposure during C. elegans apoptosis. Curr. Biol. 17(11), 994–999 (2007). doi:10.1016/j.cub.2007.05.024

    Article  PubMed  CAS  Google Scholar 

  19. Darland-Ransom, M., Wang, X., Sun, C.-L., Mapes, J., Gengyo-Ando, K., Mitani, S., Xue, D.: Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science. 320, 528–531 (2008). doi:10.1126/science.1155847

    Article  PubMed  CAS  Google Scholar 

  20. Tyurina, Y.Y., et al.: Nitrosative stress inhibits the aminophospholipid translocase resulting in phosphatidylserine externalization and macrophage engulfment: implications for the resolution of inflammation. J. Biol. Chem. 282(11), 8498–8509 (2007). doi:10.1074/jbc.M606950200

    Article  PubMed  CAS  Google Scholar 

  21. Pomorski, T., Herrmann, A., Zimmermann, B., Zachowski, A., Müller, P.: An improved assay for measuring the transverse redistribution of fluorescent phospholipids in plasma membranes. Chem. Phys. Lipids. 77, 139–146 (1995). doi:10.1016/0009-3084(95)02473-V

    Article  PubMed  CAS  Google Scholar 

  22. Gadella, B.M., Miller, N.G., Colenbrander, B., van Golde, L.M., Harrison, R.A.: Flow cytometric detection of transbilayer movement of fluorescent phospholipid analogues across the boar sperm plasma membrane: elimination of labeling artifacts. Mol. Reprod. Dev. 53(1), 108–125 (1999). doi:10.1002/(SICI)1098-2795(199905)53:1<108::AID-MRD13>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  23. Connor, J., Pak, C.H., Zwaal, R.F.A., Schroit, A.J.: Bidirectional transbilayer movement of phospholipid analogs in human red blood cells. J. Biol. Chem. 267, 19412–19417 (1992)

    PubMed  CAS  Google Scholar 

  24. Sobocki, T., Jayman, F., Sobocka, M.B., Marmur, J., Banerjee, P.: Isolation, sequencing, and functional analysis of the TATA-less murine ATPase II promoter and structural analysis of the ATPase II gene. Biochim. Biophys. Acta 1769, 61–75 (2007)

    PubMed  CAS  Google Scholar 

  25. Saito, H., Gu, J., Nishikawa, A., Ihara, Y., Fuji, J., Kohgo, Y., Taniguchi, N.: Organization of the human N-acetylglucosaminyltransferase V gene. Eur. J. Biochem. 233, 18–26 (1995). doi:10.1111/j.1432-1033.1995.018_1.x

    Article  PubMed  CAS  Google Scholar 

  26. Chin, G., El-Sherif, Y., Jayman, F., Estephan, R., Wieraszko, A., Banerjee, P.: Appearance of voltage-gated calcium channels following overexpression of ATPase II cDNA in neuronal HN2 cells. Brain Res. Mol. Brain Res. 117, 109–115 (2003). doi:10.1016/S0169-328X(03)00210-9

    Article  PubMed  CAS  Google Scholar 

  27. Korczak, B., Le, T., Elowe, S., Datti, A., Dennise, J.W.: Minimal catalytic domain of N-acetylglucosaminyltransferase V. Glycobiology 10, 595–599 (2000). doi:10.1093/glycob/10.6.595

    Article  PubMed  CAS  Google Scholar 

  28. Fang, H., Huang, W., Xu, Y.Y., Shen, Z.H., Wu, C.Q., Qiao, S.Y., Xu, Y., Yu, L., Chen, H.L.: Blocking of N-acetylglucosaminyltransferase V induces cellular endoplasmic reticulum stress in human hepatocarcinoma 7721 cells. Cell Res. 16, 82–92 (2006). doi:10.1038/sj.cr.7310011

    Article  PubMed  CAS  Google Scholar 

  29. Kang, R., Saito, H., Ihara, Y., Miyoshi, E., Koyama, N., Sheng, Y., Taniguchi, N.: Transcriptional regulation of the N-acetylglucosaminyltransferase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1. J. Biol. Chem. 271, 26706–26712 (1996). doi:10.1074/jbc.271.43.26706

    Article  PubMed  CAS  Google Scholar 

  30. Guo, H.-B., Lee, I., Kamar, M., Pierce, M.: N-acetylglucosaminyltransferase V expression levels regulate cadherin-associated homotypic cell–cell adhesion and intracellular signaling pathways. J. Biol. Chem. 278, 52412–52424 (2003). doi:10.1074/jbc.M308837200

    Article  PubMed  CAS  Google Scholar 

  31. Siegmund, A., Grant, A., Angeletti, C., Malone, L., Nichols, J.W., Rudolph, H.K.: Loss of DRS2p does not abolish transfer of fluorescence-labeled phospholipids across the plasma membrane of Saccharomyces cerevisiae. J. Biol. Chem. 273, 34399–34405 (1998). doi:10.1074/jbc.273.51.34399

    Article  PubMed  CAS  Google Scholar 

  32. Zachowski, A., Fayre, E., Cribier, S., Herve, P., Devaux, P.F.: Outside–inside translocation of aminophospholipids in the human erythrocyte membrane is mediated by a specific enzyme. Biochem 25, 2585–2590 (1986). doi:10.1021/bi00357a046

    Article  CAS  Google Scholar 

  33. Ko, J.H., Miyoshi, E., Noda, K., Ekuni, A., Kang, R., Ikeda, Y., Taniguchi, N.: Regulation of the GnT-V promoter by transcription factor Ets-1 in various cancer cell lines. J. Biol. Chem. 274, 22941–22948 (1999). doi:10.1074/jbc.274.33.22941

    Article  PubMed  CAS  Google Scholar 

  34. Saito, T., Miyoshi, E., Sasai, K., Nakano, N., Eguchi, H., Honke, K., Taniguchi, N.: A secreted type beta 1,6-N-acetylglucosaminyltransferase V (GnT-V) induces tumor angiogenesis without mediated of glycosylation: a novel function of GnT-V distinct from the original glycosyltransferase activity. J. Biol. Chem. 277, 17002–17008 (2002). doi:10.1074/jbc.M200521200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

FJ and KL were supported by funds from the New York Louis Stokes Alliance for Minority Participation Program, MAGNET/AGEP, and NIH minority supplements. The authors gratefully acknowledge the gifts of GnT-V antibody from Drs. Naoyuki Taniguchi and Eiji Miyoshi (Osaka University Medical School, Japan) and Atp8a1 antibody from Dr. Xiao-Song Xie (University of Texas Southwestern Medical Center). This project was supported by a grant from the NIH (CA77803-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Probal Banerjee.

Additional information

Tomasz Sobocki, Farah Jayman contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levano, K., Sobocki, T., Jayman, F. et al. A genetic strategy involving a glycosyltransferase promoter and a lipid translocating enzyme to eliminate cancer cells. Glycoconj J 26, 739–748 (2009). https://doi.org/10.1007/s10719-009-9233-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9233-1

Keywords

Navigation