Skip to main content

Advertisement

Log in

Genetic diversity and structure of wild and managed populations of Polaskia chende (Cactaceae) in the Tehuacán-Cuicatlán Valley, Central Mexico: insights from SSR and allozyme markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Polaskia chende is a columnar cactus endemic to central Mexico, where it is managed via silviculture due to its edible fruits. We aimed to analyse the consequences of management on population genetics and compared information from different markers to analyse ecological and evolutionary aspects of incipient domestication and genetic resources conservation. Eight populations were evaluated using seven microsatellite loci and 15 allozyme loci. SSR identified higher genetic diversity (A = 5.6, p = 98.2, HE = 0.651) than allozymes (Ar = 2.6, p = 93.3, HE = 0.479). Both marker types identified that HO and HE were higher in wild populations (SSR: HO = 0.730; HE = 0.677; allozymes: HO = 0.432; HE = 0.481) than in the managed ones (SSR: HO = 0.652; HE = 0.616; allozymes: HO = 0.417; HE = 0.474), but differences were significant only analysed by SSR. SSR identified 3 % of genetic structure between wild and managed populations and 10 % among populations (ϕPR = 0.099), a much lower estimate than with allozymes (ϕPR = 0.208). The results suggest that management has had only slight consequences on the population genetics of P. chende. Artificial selection operates at low intensity and life history traits of the species, particularly the self-incompatible breeding system, pollination by bees and seed dispersion by birds, bats and humans favour high genetic diversity and gene flow. SSR detect finer genetic variation than allozymes, but both marker types provide similar patterns of information useful for analysing population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arellano E, Casas A (2003) Morphological variation and domestication of Escontria chiotilla (Cactaceae) under silvicultural management in the Tehuacan Valley, Central Mexico. Genet Resour Crop Evol 50:439–453

    Article  Google Scholar 

  • Avise JC (2004) Molecular Markers, Natural History and Evolution. 2nd edn. Sinauer Associates, Inc. Publishers. Sunderland, Massachusetts

  • Bitocchi E, Bellucci E, Giardini A et al (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313

    Article  CAS  PubMed  Google Scholar 

  • Blancas J, Casas A, Lira R, Caballero J (2009) Traditional Management and Morphological Patterns of Myrtillocactus schenckii (Cactaceae) in the Tehuacán Valley, Central Mexico. Econ Bot 63:375–387

    Article  Google Scholar 

  • Blancas J, Casas A, Rangel-Landa S, Moreno Calles A, Torres I, Pérez-Negrón E, Solís L, Delgado-Lemus A, Parra F, Arellanes Y, Caballero J, Cortés L, Lira R (2010) Plant Management in the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot 64:287–302

    Article  Google Scholar 

  • Bush RM, Smouse PE (1992) Evidence for the adaptive significance of allozymes in forest trees. New Forest 6:179–196

    Article  Google Scholar 

  • Carmona A, Casas A (2005) Management, phenotypic patterns and domestication of Polaskia chichipe (Cactaceae) in the Tehuacán Valley, Central Mexico. J Arid Environ 60:115–132

    Article  Google Scholar 

  • Casas A, Barbera G (2002) Mesoamerican domestication and diffusion of cacti. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, Los Angeles, pp 143–162

    Google Scholar 

  • Casas A, Parra F (2007) Agrobiodiversidad, parientes silvestres y cultura. LEISA Revista de Agroecología 23:5–8

    Google Scholar 

  • Casas A, Caballero J, Mapes C, Zarate S (1997) Manejo de la vegetación, domesticación de plantas y origen de la agricultura en Mesoamérica. B Soc Bot Mex 61:31–47

    Google Scholar 

  • Casas A, Caballero J, Valiente-Banuet A (1999a) Use, Management and domestication of columnar cacti in south-central Mexico: a historical perspective. J Ethnobiol 191:71–75

    Google Scholar 

  • Casas A, Caballero J, Valiente-Banuet A, Soriano JA, Dávila P (1999b) Morphological variation and the process of domestication of Stenocereus stellatus (Cactaceae) in Central Mexico. Am J Bot 86:522–533

    Article  CAS  PubMed  Google Scholar 

  • Casas A, Cruse J, Morales E, Otero-Arnaiz A, Valiente-Banuet A (2006) Maintenance of phenotypic and genotypic diversity of Stenocereus stellatus (Cactaceae) by indigenous peoples in Central Mexico. Biodivers Conserv 15:879–898

    Article  Google Scholar 

  • Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A (2007) In situ management and domestication of plants in Mesoamerica. Ann Bot-London 100:1101–1115

    Article  Google Scholar 

  • Clark-Tapia R, Molina-Freaner F (2003) The genetic structure of a columnar cactus with a disjunct distribution: Stenocereus gummosus in the Sonoran desert. Heredity 90:443–450

    Article  CAS  PubMed  Google Scholar 

  • Cruse-Sanders JM, Parker KC, Friar EA, Huang DI, Mashayekhi S, Prince LM, Otero-Arnaiz A, Casas A (2013) Managing diversity: domestication and gene flow in Stenocereus stellatus Riccob. (Cactaceae) in México. Ecol Evol 3:1340–1355

    Article  PubMed Central  PubMed  Google Scholar 

  • Cruz M, Casas A (2002) Morphological variation and reproductive biology of Polaskia chende (Cactaceae) under domestication in Central México. J Arid Environ 51:561–576

    Article  Google Scholar 

  • Dávila P, Arizmendi MC, Valiente-Banuet A, Villaseñor JL, Casas A, Lira R (2002) Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodivers Conserv 11:421–442

    Article  Google Scholar 

  • Doebley J, Gaut B, Smith B (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Duminil J, Fineschi S, Hampe A, Jordano P, Salvini D, Vendramin GG, Petit RJ (2007) Can population genetic structure be predicted from life-history traits? Am Nat 169:662–672

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Figueredo CJ, Nassar JM, García-Rivas AE, González-Carcacía JA (2010) Population genetic diversity and structure of Pilosocereus tillianus (Cactaceae, Cereeae), a columnar cactus endemic to the Venezuelan Andes. J Arid Environ 74:1392–1398

    Article  Google Scholar 

  • Freville H, Justy F, Olivieri I (2001) Comparative allozyme and microsatellite population structure in a narrow endemic plant species, Centaurea corymbosa Pourret (Asteraceae). Mol Ecol 10:879–889

    Article  CAS  PubMed  Google Scholar 

  • García E (1981) Modificaciones al sistema de clasificación climática de Köeppen para adaptarlo a las condiciones de la República Mexicana. Universidad Nacional Autónoma de México, México, Instituto de Geografía

    Google Scholar 

  • Gepts P (1993) The use of molecular and biochemical markers in crop evolution studies. Evol Biol 27:51–94

    Article  Google Scholar 

  • Guillén S, Benítez J, Martıínez-Ramos M, Casas A (2009) Seed germination of wild, in situ-managed, and cultivated populations of columnar cacti in the Tehuacán-Cuicatlán Valley, Mexico. J Arid Environ 73:407–413

    Article  Google Scholar 

  • Guillén S, Terrazas T, De la Barrera E, Casas A (2011) Germination differentiation patterns of wild and domesticated columnar cacti in a gradient of artificial selection intensity. Genet Resour Crop Evol 58:409–423

    Article  Google Scholar 

  • Guillén S, Casas A, Terrazas T, Vega E, Martínez-Palacios A (2013) Differential survival and growth of wild and cultivated seedlings of columnar cacti: consequences of domestication. Am J Bot 100:2364–2379

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJ, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plants species. New Forest 6:95–124

    Article  Google Scholar 

  • Hamrick JL, Nason JD, Fleming TH, Nassar JM (2002) Genetic diversity in columnar cacti. In: Fleming T, Valiente-Banuet A (eds) Columnar cacti and their mutualist, evolution, ecology and conservation. The University of Arizona Press, Tucson

    Google Scholar 

  • Harlan JR (1975) Crops and man. American Society of Agronomy, Madison

    Google Scholar 

  • Hawkes JG (1983) The diversity of crop plants. Harvard University Press, London

    Book  Google Scholar 

  • Hedrick PW (2005) Genetics of Populations, 4th edn. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • IUCN (2013) IUCN Red List of Threatened Species. Version 2013.2. www.iucnredlist.org. Downloaded on 12 May 2014

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Lemaire C, Allegrucci G, Naciri M, Bahre-Sfar L, Kara H, Bonhomme F (2000) Do discrepancies between microsatellite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)? Mol Ecol 9:457–467

    Article  CAS  PubMed  Google Scholar 

  • Li YC, Fahima T, Krugman T, Beiles A, Röder MS, Korol AB, Nevo E (2000) Parallel microgeographic patterns of genetic diversity and divergence revealed by allozyme, RAPD, and microsatellites in Triticum dicoccoides at Ammiad, Israel. Conserv Genet 1:191–207

    Article  CAS  Google Scholar 

  • Lucio JD (2005) Variabilidad genética y procesos de domesticación de Polaskia chichipe (Cactaceae) en el Valle de Tehuacán, Puebla. Dissertation. Universidad Michoacana de San Nicolás de Hidalgo

  • MacNeish RS (1967) A summary of the subsistence. In: Byers DS (ed) The prehistory of the Tehuacan Valley, vol I., Environment and subsistenceUniversity of Texas Press, Austin, pp 290–331

    Google Scholar 

  • MacNeish RS (1992) The origins of agriculture and settled life. University of Oklahoma Press, London

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98:1389–1414

    Article  PubMed  Google Scholar 

  • Miller MP, Mark P (1997) Tools for populations genetics analyses (TFPGA 1.3). A windows program for the analysis of alloenzime and molecular populations genetic data. Computer Software Distributed By Author

  • Moraes EM, Abreu AG, Andrade SCS, Sene FM, Solferini VN (2005) Population genetic structure of two columnar cacti with a patchy distribution in eastern Brazil. Genetica 125:311–323

    Article  PubMed  Google Scholar 

  • Moreno-Calles AI, Casas A (2010) Agroforestry systems: restoration of semiarid zones in the Tehuacán Valley, Central Mexico. Ecol Rest 28:361–368

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Ortíz F, Stoner KE, Pérez-Negron E, Casas A (2010) Pollination biology of Myrtillocactus schenckii (Cactaceae) in wild and managed populations of the Tehuacán Valley, México. J Arid Environ 74:897–904

    Article  Google Scholar 

  • Otero-Arnaiz A, Cruse-Sanders J, Casas A, Hamrick JL (2004) Isolation and characterization of microsatellites in the columnar cactus: Polaskia chichipe and cross species amplification within the Tribe Pachycereeae (Cactaceae). Mol Ecol Notes 4:265–269

    Article  CAS  Google Scholar 

  • Otero-Arnaiz A, Casas A, Hamrick JL, Cruse-Sanders J (2005) Genetic variation and evolution of Polaskia chichipe (Cactaceae) under domestication in the Tehuacan Valley, Central México. Mol Ecol 14:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Otero-Arnaíz A, Casas A, Bartolo C, Pérez-Negrón E, Valiente-Banuet A (2003) Evolution of Polaskia chichipe (Cactaceae) under domestication in the Tehuacán Valley, central México: reproductive biology. Am J Bot 90:593–602

    Article  PubMed  Google Scholar 

  • Parker KC, Hamrick JL (1992) Genetic diversity and clonal structure in a columnar cactus, Lophocereus schottii. Am J Bot 79:86–96

    Article  Google Scholar 

  • Parra F, Pérez-Nasser N, Lira R, Perez-Salicrup D, Casas A (2008) Population genetics and process of domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley, México. J Arid Environ 72:1997–2010

    Article  Google Scholar 

  • Parra F, Casas A, Peñaloza-Ramírez JM, Cortes-Palomec AC, Rocha-Ramírez V, González-Rodríguez A (2010) Evolution under domestication: ongoing artificial selection and divergence of wild and managed Stenocereus pruinosus (Cactaceae) populations in the Tehuacán Valley, México. Ann Bot-London 106:483–496

    Article  Google Scholar 

  • Peakall P, Smouse PE (2006) GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 288–295

  • Pickersgill B (2007) Domestication of plants in the Americas: insights from mendelian and molecular genetics. Ann Bot-London 100:925–940

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Arévalo I, Casas A, Lira R, Campos J (2006) Uso, Manejo y Procesos de Domesticación de Pachycereus Hollianus (F.A.C. Weber) Buxb. (Cactaceae), en el Valle de Tehuacán-Cuicatlán. México. Interciencia 31:677–685

    Google Scholar 

  • Ruíz-Durán ME (2006) Patrones de diversidad genética y proceso de domesticación de Polaskia chende (Cactaceae) en el Valle de Tehuacán, Puebla. Dissertation. Universidad Michoacana de San Nicolás de Hidalgo

  • Rzedowski J (1978) Vegetación de México. Limusa, Mexico

    Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. W. H, Freeman, San Francisco

    Google Scholar 

  • Snedecor GW, Cochram WG (1967) Statistical methods, 6th edn. The Iowa State University Press, Arnes

    Google Scholar 

  • Stuber CW, Wendel JM, Goodman MM (1988) Techniques and scoring procedures for starch gel electrophoresis of enzymes from maize (Zea mays). Technical Bulletin 286. North Caroline State University

  • Téllez-Valdés O, Dávila-Aranda P (2003) Protected areas and climate change: a case study of the cacti in the Tehuacán-Cuicatlán Biosphere Reserve, México. Conserv Biol 17:846–853

    Article  Google Scholar 

  • Tinoco A, Casas A, Luna R, Oyama K (2005) Population genetic of wild and silvicultural managed populations of Escontria chiotilla In the Tehuacan Valley, central México. Genet Resour Crop Evol 52:525–538

    Article  Google Scholar 

  • Valiente-Banuet A, Solís L, Dávila P, Arizmendi MC, Silva C, Ortega-Ramírez J, Treviño J, Rangel-Landa S, Casas A (2009) Guía de la Vegetación del Valle de Tehuacán- Cuicatlán. UNAM, CONABIO, INAH, México

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Program Note. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Weir BS (1990) Genetic data analysis. Sinauer Associates, Sunderland

    Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-Statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Yeh YC, O’Malley D (1980) Enzyme variation in natural populations of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, from British Columbia. 1. Genetic variation patterns in coastal populations. Silvae Genet 29:83–92

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by two grants: Secretaría de Educación Pública-Consejo Nacional de Ciencia y Tecnología (SEP-CONACyT) 2008-103551 and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT, UNAM, research projects IN205111-3 and IN209214). We thank Edgar Pérez-Negrón and Víctor Rocha-Ramírez for assistance in the field and laboratory, respectively. The authors also thank Antonio Rodríguez González for his support in the statistical analyses and Luis Ortíz-Catedral for the critical review of this manuscript. This study is part of the B.Sc. Dissertations of the first and second authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dánae Cabrera-Toledo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Negrete, G., Ruíz-Durán, M.E., Cabrera-Toledo, D. et al. Genetic diversity and structure of wild and managed populations of Polaskia chende (Cactaceae) in the Tehuacán-Cuicatlán Valley, Central Mexico: insights from SSR and allozyme markers. Genet Resour Crop Evol 62, 85–101 (2015). https://doi.org/10.1007/s10722-014-0137-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0137-y

Keywords

Navigation