Skip to main content
Log in

Impoundment constraint of fish niche diversity in a temperate Australian river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dams constitute a major threat to aquatic ecosystems world-wide by modifying habitat and impairing opportunities for many freshwater fish. Subsequently, there can be a loss in fish diversity and change in the species distributions and population structure that ultimately contribute to changes in trophic structure and ecosystem function. In this study, stable isotope analysis (SIA) was used to compare trophic interaction and niche space of five fish species residing upstream and downstream of a significant barrier (Tallowa Dam) on the Shoalhaven River in south-eastern Australia. Significant reduction in niche space was found among predator/prey species residing in upstream habitat, implying limited dietary opportunity. Mixing calculations for Macquaria novemaculeata confirmed ontogenetic differences upstream and downstream of the dam. Causal mechanisms for this variability in trophic structure include habitat modification and/or discontinuity in river connectivity. SIA provides a useful tool for demonstrating the effect of barriers and/or impoundments on aquatic ecosystems, and for developing future monitoring programmes to evaluate restoration strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araujo-Lima, C. A. R. M., A. A. Agostinho & N. N. Fabre, 1995. Trophic aspects of fish communities in Brazilian rivers and reservoirs. In Tundisi, J. G., C. E. M. Bicudo & T. Matsamura-Tundisi (eds) Limnology in Brazil. ABC/SBL, Rio de Janeiro: 105–136

  • Baumgartner, L. J., C. A. Boys, I. G. Stuart & B. P. Zampatti, 2010. Evaluating migratory fish behaviour and fishway performance: testing a combined assessment methodology. Australian Journal of Zoology 58(3): 154–164.

    Article  Google Scholar 

  • Bearhop, S., C. E. Adams, S. Waldron, R. A. Fuller & H. Macleod, 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73(5): 1007–1012.

    Article  Google Scholar 

  • Bishop, K. & J. Bell, 1978. Observations on the Fish Fauna below Tallowa Dam (Shoalhaven River, New South Wales) during River Flow Stoppages. Marine and Freshwater Research 29(4): 543–549.

    Article  Google Scholar 

  • Bolnick, D. I., R. Svanbäck, J. A. Fordyce, L. H. Yang, J. M. Davis, C. D. Hulsey & M. L. Forister, 2003. The ecology of individuals: incidence and implications of individual specialization. The American Naturalist 161(1): 1–28.

    Article  PubMed  Google Scholar 

  • Bouillon, S., R. M. Connolly & D. P. Gillikin, 2011. Use of stable isotopes to understand food webs and ecosystem functioning in estuaries. In Wolanski, E. & D. S. McLusky (eds), Treatise on Estuarine and Coastal Science, Vol. 7. Academic Press, Waltham: 143–173.

    Chapter  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30(4): 492–507.

    Article  PubMed  Google Scholar 

  • Cumming, G. S., 2004. The impact of low-head dams on fish species richness in Wisconsin, USA. Ecological Applications 14(5): 1495–1506.

    Article  Google Scholar 

  • Currin, C. A., L. A. Levin, T. S. Talley, R. Michener & D. Talley, 2011. The role of cyanobacteria in Southern California salt marsh food webs. Marine Ecology 32(3): 346–363.

    Article  Google Scholar 

  • de Mérona, B. & R. Vigouroux, 2006. Diet changes in fish species from a large reservoir in South America and their impact on the trophic structure of fish assemblages (Petit-Saut Dam, French Guiana). Annales de Limnologie – International Journal of Limnology 42(01): 53–61.

    Article  Google Scholar 

  • De Niro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42(5): 495–506.

    Article  Google Scholar 

  • Elton, C. S., 1927. Animal Ecology. Sidgwick and Jackson, London.

    Google Scholar 

  • Fry, B., 2006. Stable Isotope Ecology. Springer, New York.

    Book  Google Scholar 

  • Fullerton, A. H., K. M. Burnett, E. A. Steel, R. L. Flitcroft, G. R. Pess, B. E. Feist, C. E. Torgersen, D. J. Miller & B. L. Sanderson, 2010. Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Paper 265 edn. Agencies and Staff of the U.S. Department of Commerce.

  • Gehrke, P. C., D. M. Gilligan & M. Barwick, 2002. Changes in fish communities of the Shoalhaven River 20 years after construction of Tallowa Dam, Australia. River Research and Applications 18(3): 265–286.

    Article  Google Scholar 

  • Greathouse, E. A., C. M. Pringle, W. H. McDowell & J. G. Holmquist, 2006. Indirect upstream effects of dams: consequences of migratory consumer extirpation in Puerto Rico. Ecological Applications 16(1): 339–352.

    Article  PubMed  Google Scholar 

  • Harris, J., 1985. Diet of the Australian bass, Macquaria novemaculeata (Perciformes: Percichthyidae), in the Sydney Basin. Marine and Freshwater Research 36(2): 219–234.

    Article  Google Scholar 

  • Harris, J. H., 1983. The Australian Bass, Macquaria novemaculeata. PhD, University of New South Wales, Sydney

  • Harris, J. H. & P. C. Gehrke, 1997. Fish and Rivers in Stress: The NSW Rivers Survey. NSW Fisheries Office of Conservation, Cooperative Research Centre for Freshwater Ecology, Cronulla, NSW. 298.

    Google Scholar 

  • Hesslein, R. H., K. A. Hallard & P. Ramlal, 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Canadian Journal of Fisheries and Aquatic Sciences 50(10): 2071–2076.

    Article  CAS  Google Scholar 

  • Holmquist, J. G., J. M. Schmidt-Gengenbach & B. B. Yoshioka, 1998. High dams and marine-freshwater linkages: effects on native and introduced Fauna in the Caribbean. Conservation Biology 12(3): 621–630.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood-pulse concept in river-floodplain systems. In: Dodge, D. P. (ed.), Canadian Journal of Fisheries and Aquatic Sciences 106: 110–127.

  • Khan, T., 2003. Dietary studies on exotic carp (Cyprinus carpio L.) from two lakes of western Victoria, Australia. Aquat Sciences 65(3): 272–286.

    Article  Google Scholar 

  • Koehn, J., A. Brumley & P. Gehrke, 2000. Managing the impacts of C. carpio, Canberra, Australia.

  • Koehn, J. D., 2004. Carp (Cyprinus carpio) as a powerful invader in Australian waterways. Freshwater Biology 49(7): 882–894.

    Article  Google Scholar 

  • Layman, C. A., D. A. Arrington, R. B. Langerhans & B. R. Silliman, 2004. Degree of fragmentation affects fish assemblage structure in Andros Island (Bahamas) estuaries. Caribbean Journal of Science 40: 232–244.

    Google Scholar 

  • Layman, C. A., D. A. Arrington, C. G. Montaña & D. M. Post, 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88(1): 42–48.

    Article  PubMed  Google Scholar 

  • Liermann, C. R., C. Nilsson, J. Robertson & R. Y. Ng, 2012. Implications of dam obstruction for global freshwater fish diversity. BioScience 62(6): 539–548.

    Article  Google Scholar 

  • Lowe-McConnell, R. H., 1985. Ecological Studies in Tropical Fish Communities. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mallen-Cooper, M., 1996. Fishways and Freshwater Fish Migration in South-eastern Australia. PhD Thesis. University of Technology, Sydney.

  • Matsuzaki, S. S., K. Mabuchi, N. Takamura, M. Nishida & I. Washitani, 2009. Behavioural and morphological differences between feral and domesticated strains of common carp Cyprinus carpio. Journal of Fish Biology 75(6): 1206–1220.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, W. J., 1998. Patterns in Freshwater Fish Ecology. Chapman and Hall, New York.

    Book  Google Scholar 

  • Mazumder, D., R. J. Williams, D. Reid, N. Saintilan & R. Szymczak, 2008. Variability of stable isotope ratios of glassfish (Ambassis jacksoniensis) from Mangrove/Saltmarsh environments in Southeast Australia and implications for choosing sample size. Environmental Bioindicators 3(2): 114–123.

    Article  Google Scholar 

  • Mazumder, D., M. Johansen, N. Saintilan, J. Iles, T. Kobayashi, L. Knowles & L. Wen, 2012. Trophic shifts involving native and exotic fish during hydrologic recession in floodplain wetlands. Wetlands 32(2): 267–275.

    Article  Google Scholar 

  • McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2): 378–390.

    Article  CAS  Google Scholar 

  • McDowell, R. M., 1996. Freshwater Fishes of South-Eastern Australia. Reed Books, Sydney.

    Google Scholar 

  • Mercado-Silva, N., M. R. Helmus & M. J. V. Zanden, 2009. The effects of impoundment and non-native species on a river food web in Mexico’s central plateau. River Research and Applications 25(9): 1090–1108.

    Article  Google Scholar 

  • Newsome, S. D., C. Martinez del Rio, S. Bearhop & D. L. Phillips, 2007. A niche for isotopic ecology. Frontiers in Ecology and the Environment 5(8): 429–436. doi:10.1890/060150.1.

    Article  Google Scholar 

  • Nilsson, C., R. Jansson & U. Zinko, 1997. Long-term responses of river-margin vegetation to water-level regulation. Science 276(5313): 798–800. doi:10.1126/science.276.5313.798.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, C., C. A. Reidy, M. Dynesius & C. Revenga, 2005. Fragmentation and flow regulation of the world’s large river systems. Science 308(5720): 405–408. doi:10.1126/science.1107887.

    Article  CAS  PubMed  Google Scholar 

  • Olden, J. D. & R. J. Naiman, 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology 55(1): 86–107.

    Article  Google Scholar 

  • Orth, D. J. & R. J. White, 1993. Stream habitat management. In Kohler, C. C. & W. A. Hubert (eds), Inland Fisheries Management in North America. American Fisheries Society, Bethesda, MA: 205–230.

    Google Scholar 

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2008. SIAR: Stable isotope analysis in R. http://cran.r-project.org/web/packages/siar/index.html.

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS One 5(3): e9672.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips, D. & J. Gregg, 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136(2): 261–269.

    Article  PubMed  Google Scholar 

  • Pinnegar, J. K. & N. V. C. Polunin, 1999. Differential fractionation of δ13C and δ15 N among fish tissues: implications for the study of trophic interactions. Functional Ecology 13(2): 225–231.

    Article  Google Scholar 

  • Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks & J. C. Stromberg, 1997. The natural flow regime. a paradigm for river conservation and restoration. BioScience 47(11): 769–784.

    Article  Google Scholar 

  • Post, D., C. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. Montaña, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152(1): 179–189.

    Article  PubMed  Google Scholar 

  • Pringle, C., 2006. Hydrologic connectivity: a neglected dimension of conservation biology. In Crooks, K. R. & M. Sanjayan (eds), Connectivity Conservation. Cambridge University Press, Cambridge: 233–254.

    Chapter  Google Scholar 

  • Pringle, C. M., 2001. Hydrologic connectivity and the management of biological reserves: a global perspective. Ecological Applications 11(4): 981–998.

    Article  Google Scholar 

  • Reinfelds, I. V., C. T. Walsh, D. E. van der Meulen, I. O. Growns & C. A. Gray, 2013. Magnitude, frequency and duration of instream flows to stimulate and facilitate catadromous fish migrations: Australian bass (Macquaria novemaculeata, Perciformes, Percichthyidae). River Research and Applications 29(4): 512–527.

    Article  Google Scholar 

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. C. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7(4): 433–455.

    Article  Google Scholar 

  • Schiller, C. B. & J. H. Harris, 2001. Native and alien fish. In Young, W. J. (ed.), Rivers as ecological systems: the Murray-Darling Basin. Murray-Darling Basin Commission, Canberra: 229–258.

    Google Scholar 

  • Syväranta, J., A. Lensu, T. J. Marjomäki, S. Oksanen & R. I. Jones, 2013. An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS One 8(2): e56094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh, C. T., M. P. Rodgers, W. J. Robinson & D. Gilligan, 2014. Evaluation of the effectiveness of the Tallowa Dam Fishway Final Report Series No 143. NSW Department of Primary Industries Fisheries New South Wales

  • Ward, J. V. & J. A. Stanford, 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research & Management 11(1): 105–119.

    Article  Google Scholar 

  • Williams, S. E., Y. M. Williams, J. VanDerWal, J. L. Isaac, L. P. Shoo & C. N. Johnson, 2009. Ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction. Proceedings of the National Academy of Sciences 106(Supplement 2): 19737–19741.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Mick Bettanin and Michael Rodgers (NSW Fisheries) are thanked for assisting with sample collection. Tom Doyle (UOW) is thanked for his help in sample preparation. Barbora Neklapilova and Scott Allchin (ANSTO) assisted with stable isotope sample preparation and analysis. Comments from anonymous reviewers allowed us to improve the quality of the completed manuscript. Animal ethics approval was granted by the Director General’s Animal Ethics Committee of the Department of Primary Industries, Project Number 04/03, and samples collected from Shoalhaven River were taken under NSW Scientific Collection Permit Section 37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashish Mazumder.

Additional information

Handling editor: Alison King

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazumder, D., Williams, R.J., Wen, L. et al. Impoundment constraint of fish niche diversity in a temperate Australian river. Hydrobiologia 771, 195–206 (2016). https://doi.org/10.1007/s10750-015-2630-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2630-5

Keywords

Navigation