Skip to main content
Log in

Nanostructuration of i-Al64Cu23Fe13 quasicrystals produced by arc-furnace

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The Al46Cu23Fe13 quasicrystal phase, prepared by arc-melting and nanostructured using high energy ball milling technique, was studied employing X-ray diffraction, transmission electron microscopy, ferromagnetic resonance and electric transport measurements. Fe local environments were studied by Mössbauer spectroscopy. The resistivity ratio R(4.2 K)/R(300 K) is within the expected values commonly observed in an icosahedral phase. In general, the experimental results show that an appropriate heat treatment of the as-cast alloy prepared by arc-melting makes possible to obtain good quasicrystal samples. On the other hand, for milling time longer than five hours, the average grain-size of quasicrystal phase reduces, but it preserves Fe local atomic orders. It is also observed that the quasicrystalline sample decomposes in an iron rich nano-quasicrystalline phase and a ε-Al2Cu3 phase. Electric transport measurements show that at low temperatures the nano-quasicrystalline samples behave strongly different to their solid counterparts, an effect attributed to a long-range order reduction and an increasing of grain boundary regions. The presence of local magnetic moments in the nanostructured sample is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D., Cahn, J.W.: Phys. Rev. Lett. 53, 1951 (1984)

    Article  ADS  Google Scholar 

  2. Dubois, J.M.: Mater. Sci. Eng. A 4, 294–296 (2000)

    Google Scholar 

  3. Brunet, P., Zhang, L.M., Sordelet, D.J., Besser, M., Dubois, J.M.: Mater. Sci. Eng. A 74, 294–296 (2000)

    Google Scholar 

  4. Wolf, B., Bambauer, K.O., Paufler, P.: Mater. Sci. Eng. A 298, 284 (2001)

    Article  Google Scholar 

  5. Belin-Ferré, E., Dubois, J.M., Fournée, V., Brunet, P., Sordelet, D.J., Zhang, L.M.: Mater. Sci. Eng. A 818, 294–296 (2000)

    Google Scholar 

  6. Sordelet, D.J., Besser, M.F., Logsdon, J.L.: Mater. Sci. Eng. A 54, 255 (1998)

    Google Scholar 

  7. Macía, E.: Phys. Rev. B 80, 205103 (2009)

    Article  ADS  Google Scholar 

  8. Yoshimura, M., Tsai, A.P.: J. Alloys Compounds 342, 451 (2002)

    Article  Google Scholar 

  9. Tsai, P., Inoue, A., Masumoto, T.: Jpn. J. Appl. Phys. 26, L1505 (1987)

    Article  ADS  Google Scholar 

  10. Dolinšek, J., Vrtnik, S., Klanjšek, M., Jagličič, Z., Smontara, A., Smiljanič, I., Bilušič, A., Yokoyama, Y., Inoue, A., Landauro, C.V.: Phys. Rev. B 76, 54201 (2007)

    Article  ADS  Google Scholar 

  11. Benjamin, J.S.: Metall. Trans. 1, 2943 (1970)

    Google Scholar 

  12. Koch, C.C.: Ann. Rev. Mater. Sci. 19, 121 (1989)

    Article  ADS  Google Scholar 

  13. Zoz, H.: Mater. Sci. Forum. 419, 179–181 (1995)

    Google Scholar 

  14. Basset, D., Matteazzi, P., Mani, F.: Mater. Sci. Eng. A 168, 149 (1993)

    Article  Google Scholar 

  15. Barua, P., Murty, B.S., Mathur, B.K., Srinivas, V.: J. Appl. Phys. 91, 5353 (2002)

    Article  ADS  Google Scholar 

  16. Quispe-Marcatoma, J., Landauro, C.V., Taquiere, M., Rojas Ayala, C., Peña Rodriguez, V.A.: Hip Int. 195, 105 (2010)

    Article  ADS  Google Scholar 

  17. Lin, C.M., Lin, S.T.: Chinese Journal of Physics 31, 297 (1993)

    ADS  Google Scholar 

  18. Weisbecker, P., Bonhomme, G., Bott, G., Dubois, J.M.: J. Non-Cryst. Solids 351, 1630 (2005)

    Article  ADS  Google Scholar 

  19. Cahn, J.W., Shechtman, D., Gratias, D.: J. Mater. Res. 1, 13 (1986)

    Article  ADS  Google Scholar 

  20. Cornier-Quiquandon, M., Quivy, A., Lefebvre, S., Elkaim, E., Heger, G., Katz, A., Gratias, D.: Phys. Rev. B 44, 2071 (1991)

    Article  ADS  Google Scholar 

  21. Tiwari, R.S., Yadav, T.P., Mukhopadhyay N.K., Shaz, M. A. : Z. Kristallogr. 224, 26 (2009)

    Article  Google Scholar 

  22. Smiljanić, I., Bilušić, A., Bihar, Ž., Lukatela, J., Leontić, B., Dolinšek, J., Smontara, A.: MTAEC9 41(6), 265 (2007)

    Google Scholar 

  23. Singh, K., Bahadur, D., Radha, S., Nigam, A.K., Prasad, S.: JALCOM 257, 57 (1997)

    Google Scholar 

  24. Bigg, B.D., Li, Y., Poon, S.J.: Phys. Rev. B 43, 8747 (1991)

    Article  ADS  Google Scholar 

  25. Stadnik, Z.M., Stroink, G., Ma, H., Williams, G.: Phys. Rev. B 39, 9797 (1989)

    Article  ADS  Google Scholar 

  26. Chien, C.L, Lu, M.: Phys. Rev. B 45, 12793 (1992)

    Article  ADS  Google Scholar 

  27. Stadnik, Z.M., Takeuchi, T., Tanaka, N., Mizutani, U.: J. Phys., Condens. Matter 15, 6365 (2003)

    Article  ADS  Google Scholar 

  28. Brand, R.A., Pelloth, J., Hippert, F., Calvayrac, Y.: J. Phys. Condens. Matter 11, 7523 (1999)

    Article  ADS  Google Scholar 

  29. Brand, R.A., Hippert, F., Frick, B.: J. Phys. Condens. Matter 21, 045405 (2009)

    Article  Google Scholar 

  30. Bahadur, D.: Prog. Cryst. Growth Charact. Mater. 34, 287 (1997)

    Article  Google Scholar 

  31. Misra, S.K., Kahrizi, M., Singh, K., Venkatramani, N., Bahadur, D.: JMMM 150, 430 (1995)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Quispe-Marcatoma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quispe-Marcatoma, J., Rojas-Ayala, C., Landauro, C.V. et al. Nanostructuration of i-Al64Cu23Fe13 quasicrystals produced by arc-furnace. Hyperfine Interact 203, 1–8 (2011). https://doi.org/10.1007/s10751-011-0363-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0363-z

Keywords

Navigation