Skip to main content
Log in

Magnetic composites from minerals: study of the iron phases in clay and diatomite using Mössbauer spectroscopy, magnetic measurements and XRD

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Magnetic particles as matrix for enzyme immobilization have been used and due to the enzymatic derivative can be easily removed from the reaction mixture by a magnetic field. This work presents a study about the synthesis and characterization of iron phases into magnetic montmorillonite clay (mMMT) and magnetic diatomaceous earth (mDE) by 57Fe Mössbauer spectroscopy (MS), magnetic measurements and X-ray diffraction (XRD). Also these magnetic materials were assessed as matrices for the immobilization of invertase via covalent binding. Mössbauer spectra of the magnetic composites performed at 4.2 K showed a mixture of magnetite and maghemite about equal proportion in the mMMT, and a pure magnetite phase in the sample mDE. These results were verified using XRD. The residual specific activity of the immobilized invertase on mMMT and mDE were 83 % and 92.5 %, respectively. Thus, both magnetic composites showed to be promising matrices for covalent immobilization of invertase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanjay, G., Sugunan, S.: Glucoamylase immobilized on montmorillonite: synthesis, characterization and starch hydrolysis activity in a fixed bed reactor. Catal. Commun. 6(8), 525–530 (2005). doi:10.1016/j.catcom.2005.04.016

    Article  Google Scholar 

  2. Lagaly, G., Ziesmer, S.: Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions. Adv. Colloid Interface Sci. 100–102(0), 105–128 (2003). doi:10.1016/s0001-8686(02)00064-7

    Article  Google Scholar 

  3. Ghiazza, M., Gazzano, E., Bonelli, B., Fenoglio, I., Polimeni, M., Ghigo, D., Garrone, E., Fubini, B.: Formation of a vitreous phase at the surface of some commercial diatomaceous earth prevents the onset of oxidative stress effects. Chem. Res. Toxicol. 22(1), 136–145 (2008). doi:10.1021/tx800270g

    Article  Google Scholar 

  4. Maciel, J.C., Andrad, P.L., Neri, D.F.M., Carvalho, L.B.Jr., Cardoso, C.A., Calazans, G.M.T., Albino Aguiar, J., Silva, M.P.C.: Preparation and characterization of magnetic levan particles as matrix for trypsin immobilization. J. Magn. Magn. Mater. 324(7), 1312–1316 (2012)

    Article  ADS  Google Scholar 

  5. Neri, D.F.M., Balcão, V.M., Cardoso, S.M., Silva, A.M.S., Domingues, M.d.R.M., Torres, D.P.M., Rodrigues, L.R.M., Carvalho, L.B.Jr., Teixeira, J.A.C.: Characterization of galactooligosaccharides produced by β-galactosidase immobilized onto magnetized Dacron. Int. Dairy J. 21(3), 172–178 (2011). doi:10.1016/j.idairyj.2010.10.009

    Article  Google Scholar 

  6. Neri, D.F.M., Balcão, V.M., Carneiro-da-Cunha, M.G., Carvalho Jr, L.B., Teixeira, J.A.: Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane–polyvinyl alcohol magnetic (mPOS–PVA) composite for lactose hydrolysis. Catal. Commun. 9(14), 2334–2339 (2008). doi:10.1016/j.catcom.2008.05.022

    Article  Google Scholar 

  7. Neri, D.F.M., Balcao, V.M., Costa, R.S., Rocha, I.C.A.P., Ferreira, E.M.F.C., Torres, D.P.M., Rodrigues, L.R.M., Carvalho, L.B., Teixeira, J.A.: Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem. 115(1), 92–99 (2009). doi:10.1016/j.foodchem.2008.11.068

    Article  Google Scholar 

  8. Neri, D.F.M., Balcao, V.M., Dourado, F.O.Q., Oliveira, J.M.B., Carvalho, L.B., Teixeira, J.A.: Immobilized β-galactosidase onto magnetic particles coated with polyaniline: support characterization and galactooligosaccharides production. J. Mol. Catal., B Enzym. 70(1–2), 74–80 (2011)

    Article  Google Scholar 

  9. Neri, D.F.M., Bernardino, D.P.B., Beltrão, E.I.C., Carvalho, L.B.Jr.: Purines oxidation by immobilized xanthine oxidase on magnetic polysiloxane–polyvinyl alcohol composite. Appl. Catal. A Gen. 401(1–2), 210–214 (2011). doi:10.1016/j.apcata.2011.05.026

    Article  Google Scholar 

  10. Soria, F., Ellenrieder, G., Oliveira, G., Cabrera, M., Carvalho L.: α-L-Rhamnosidase of Aspergillus terreus immobilized on ferromagnetic supports. Appl. Microbiol. Biotechnol. 93(3), 1127–1134 (2012). doi:10.1007/s00253-011-3469-y

    Article  Google Scholar 

  11. Amaral, I.P.G., Carneiro-da-Cunha, M.G., Carvalho, L.B.Jr., Bezerra, R.S.: Fish trypsin immobilized on ferromagnetic Dacron. Process Biochem. 41(5), 1213–1216 (2006). doi:10.1016/j.procbio.2005.11.023

    Article  Google Scholar 

  12. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951)

    Google Scholar 

  13. Wen, X., Yang, J., He, B., Gu, Z.: Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr. Appl. Phys. 8(5), 535–541 (2008). doi:10.1016/j.cap.2007.09.003

    Article  ADS  Google Scholar 

  14. Fang, F.F., Kim, J.H., Choi, H.J.: Synthesis of core–shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer 50(10), 2290–2293 (2009)

    Article  Google Scholar 

  15. Pinna, N., Grancharov, S., Beato, P., Bonville, P., Antonietti, M., Niederberger, M.: Magnetite Nanocrystals: nonaqueous synthesis, characterization, and solubility†. Chem. Mater. 17(11), 3044–3049 (2005). doi:10.1021/cm050060+

    Article  Google Scholar 

  16. Kim, W., Suh, C.-Y., Cho, S.-W., Roh, K.-M., Kwon, H., Song, K., Shon, I.-J.: A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique. Talanta 94(0), 348–352 (2012). doi:10.1016/j.talanta.2012.03.001

    Article  Google Scholar 

  17. Wang, J., Wu, H.-Y., Yang, C.-Q., Lin, Y.-L.: Room temperature Mössbauer characterization of ferrites with spinel structure. Mater. Charact. 59(12), 1716–1720 (2008). doi:10.1016/j.matchar.2008.03.013

    Article  Google Scholar 

  18. Korecki, J., Handke, B., Spiridis, N., Slezak, T., Flis-Kabulska, I., Haber, J.: Size effects in epitaxial films of magnetite. Thin Solid Films 412, 14–23 (2002)

    Article  ADS  Google Scholar 

  19. Dyar, M.D., Agresti, D.G., Schaefer, M.W., Grant, C.A., Sklute, E.C.: Mössbauer spectroscopy of earth and planetary materials. Ann. Rev. Earth Planet. Sci. 34, 83–125 (2006)

    Article  ADS  Google Scholar 

  20. Cabrera, L., Gutierrez, S., Menendez, N., Morales, M.P., Herrasti, P.: Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta 53(8), 3436–3441 (2008). doi:10.1016/j.electacta.2007.12.006

    Article  Google Scholar 

  21. Zhang, L.-Y., Gu, H.-C., Wang, X.-M.: Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J. Magn. Magn. Mater. 311(1), 228–233 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. de Carvalho Jr.

Additional information

Proceedings of the Thirteenth Latin American Conference on the Applications of the Mössbauer Effect, (LACAME 2012), Medellín, Columbia, 11 16 November 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrera, M., Maciel, J.C., Quispe-Marcatoma, J. et al. Magnetic composites from minerals: study of the iron phases in clay and diatomite using Mössbauer spectroscopy, magnetic measurements and XRD. Hyperfine Interact 224, 197–204 (2014). https://doi.org/10.1007/s10751-013-0858-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-013-0858-x

Keywords

Navigation