Skip to main content
Log in

Nanostructured FeNiZrB powders synthesized by high-energy ball milling: structural and hyperfine characterizations

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Nanostructured (Fe0.5Ni0.5)92Zr5B3 alloy was prepared by milling a blend of pre-alloyed Fe50Ni50 precursor and high purity chemical elemental powders of Zr and B in a high-energy ball mill setup. Rietveld refinement of the X-ray diffraction pattern of the final sample (30 h of milling) revealed presence of two Fe–Ni rich phases [disordered fcc γ–(Fe,Ni) alloy with Zr and B and the atomically ordered FeNi] with grain sizes in nanometer scale. Fe and Ni atoms were locally probed using extended X-ray absorption fine structure EXAFS and 57Fe Mössbauer spectroscopy. Whilst EXAFS analysis of milled samples suggested structural properties similar to the pre-alloyed precursor, Mössbauer data have shown the Fe2B phase formation after 3 h of milling, suggesting that the final material consists of nanograins of ordered FeNi (8%) and Fe2B (6%) phases dispersed in solid solution of γ–(Fe,Ni) alloy rich in nickel (86%) with Zr and B atoms impregnated in grain boundary defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be made available from the authors on request.

References

  1. Benjamin, J.S.: Dispersion strengthened super-alloys by mechanical alloying. Metall. Trans. 1, 2943–2951 (1970). https://doi.org/10.1007/BF03037835

    Article  Google Scholar 

  2. Koch, C.C.: Materials Synthesis by Mechanical Alloying. Ann. Rev. Mater. Sci. 19, 121–143 (1989). https://doi.org/10.1146/annurev.ms.19.080189.001005

    Article  ADS  Google Scholar 

  3. Zoz, H.: Attritor Technology-Latest Developments. Mater. Sci. Forum 179–181, 419–424 (1995). https://doi.org/10.4028/www.scientific.net/MSF.179-181.419

    Article  Google Scholar 

  4. Basset, D., Matteazzi, P., Mani, F.: Designing a high energy ball-mill for synthesis of nanophase materials in large quantities. Mater. Sci. Eng. A 168, 149–152 (1993). https://doi.org/10.1016/0921-5093(93)90718-T

    Article  Google Scholar 

  5. Miglierini, M., Lančok, A., Kohout, J.: Hyperfine fields in nanocrystalline Fe–Zr–B probed by 57Fe nuclear magnetic resonance spectroscopy. Appl. Phys. Lett. 96, 211902 (2010). https://doi.org/10.1063/1.3431612

    Article  ADS  Google Scholar 

  6. Stankov, S., Sepiol, B., Kaňuch, T., Scherjau, D., Würschum, R., Miglierini, M.: High temperature Mössbauer effect study of Fe90Zr7B3 nanocrystalline alloy. J. Phys. Condens. Matter 17, 3183–3196 (2005). https://doi.org/10.1088/0953-8984/17/21/013

    Article  ADS  Google Scholar 

  7. Suzuki, K., Makino, A., Inoue, A., Masumoto, T.: Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M=transition metal) alloys with high saturation magnetization (invited). J. Appl. Phys. 70, 6232–6237 (1991). https://doi.org/10.1063/1.350006

    Article  ADS  Google Scholar 

  8. Świerczek, J.: Medium range ordering and some magnetic properties of amorphous Fe90Zr7B3 alloy. J. Magn. Magn. Mater. 322, 2696–2702 (2010). https://doi.org/10.1016/j.jmmm.2010.04.010

    Article  ADS  Google Scholar 

  9. Świerczek, J., Mydlarz, T.: Magnetic entropy changes at early stages of nanocrystallization in amorphous Fe90Zr7B3 ribbons. J. Alloy. Compd. 509, 9340–9345 (2011). https://doi.org/10.1016/j.jallcom.2011.07.033

    Article  Google Scholar 

  10. Gao, Y., Shindo, D., Bitoh, T., Makino, A.: Domain structures of nanocrystalline Fe90Zr7B3 alloy studied by Lorentz microscopy. Sci. Tech. Adv. Mater. 4, 353–359 (2003). https://doi.org/10.1016/j.stam.2003.09.001

    Article  Google Scholar 

  11. Hua, Z., Sun, Y.M., Yu, W.Q., Wei, M.B., Liu, L.H.: Preparation and properties of FeZrB amorphous-nanocrystalline soft magnetic alloy. J. Wuhan Univ. Technol. Mat. Sci. Edit. 24, 747–749 (2009). https://doi.org/10.1007/s11595-009-5747-4

    Article  Google Scholar 

  12. Hua, Z., Sun, Y.M., Yu, W.Q., Wei, M.B., Liu, L.H.: Structure and magnetic properties of Fe88−xZrxB12 (x = 5, 10, 20) alloys prepared by mechanical alloying. J. Alloy. Compd. 477, 529–531 (2009). https://doi.org/10.1016/j.jallcom.2008.10.075

    Article  Google Scholar 

  13. Saravanan, T.T., Kumaran, S., Srinivasa Rao, T.: Structural evolution and magnetic properties of mechanically alloyed metastable Fe–Ni–Zr–B system. Mater. Lett. 63, 780–782 (2009). https://doi.org/10.1016/j.matlet.2009.01.003

    Article  Google Scholar 

  14. Suñol, J.J., González, A., Bonastre, J., Clavaguera-Mora, M.T., Arcondo, B.: Synthesis and characterization of nanocrystalline FeNiZrB developed by mechanical alloying. J. Alloy. Compd. 434–435, 415–419 (2007). https://doi.org/10.1016/j.jallcom.2006.08.319

    Article  Google Scholar 

  15. Suzuki, K., Kataoka, N., Inoue, A., Makino, A., Masumoto, T.: High Saturation Magnetization and Soft Magnetic Properties of bcc Fe–Zr–B Alloys with Ultrafine Grain Structure. Mater. Trans. JIM 31(8), 743–746 (1990). https://doi.org/10.2320/matertrans1989.31.743

    Article  Google Scholar 

  16. Yoshizawa, Y., Oguma, S., Yamauchi, K.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044–6046 (1988). https://doi.org/10.1063/1.342149

    Article  ADS  Google Scholar 

  17. Pereira, R.D., Passamani, E.C., Larica, C., Freitas, J.C.C., Takeuchi, A.Y.: Nanostructured FeZrCuB alloys prepared by mechanosynthesis. J. Appl. Phys. 102, 033515 (2007). https://doi.org/10.1063/1.2768009

    Article  ADS  Google Scholar 

  18. Peña Rodríguez, V.A., Quispe Marcatoma, J., Rojas Ayala, Ch., Baggio-Saitovitch, E.M., Passamani, E.C.: Local environments of Fe and Co in (Fe0.5Co0.5)75Si15B10 mechanically alloyed. J. Alloy. Compd. 475, 29–34 (2009). https://doi.org/10.1016/j.jallcom.2008.07.104

    Article  Google Scholar 

  19. Guérault, H., Bureau, B., Silly, G., Buzaré, J.Y., Grenèche, J.M.: Local structural orders in nanostructured fluoride powders. J. Non Cryst. Solids 287(1–3), 65–69 (2001). https://doi.org/10.1016/S0022-3093(01)00541-5

    Article  ADS  Google Scholar 

  20. Herr, U., Jing, J., Birringer, R., Gonser, U., Gleiter, H.: Investigation of nanocrystalline iron materials by Mössbauer spectroscopy. Appl. Phys. Lett. 50, 472–474 (1987). https://doi.org/10.1063/1.98177

    Article  ADS  Google Scholar 

  21. Grafouté, M., Labaye, Y., Calvayrac, F., Grenèche, J.M.: Structure of grain boundaries in nanostructured powders: a Monte-Carlo/EAM numerical investigation. Eur. Phys. J. B 45, 419–424 (2005). https://doi.org/10.1140/epjb/e2005-00199-x

    Article  ADS  Google Scholar 

  22. Herzer, G.: Nanocrystalline soft magnetic alloys. In: Handbook of Magnetic Materials, Vol. 10, Chapter 3, 415–462. Elsevier Science, Amsterdam (1997)

  23. Pillaca Quispe, M., Landauro, C.V., Pinto Vergara, M.Z., Quispe-Marcatoma, J., Rojas-Ayala, C., Peña-Rodríguez, V.A., Baggio-Saitovitch, E.M.: Influence of high energy milling on the microstructure and magnetic properties of the Al–Cu–Fe phases: the case of the i-Al64Cu23Fe13quasicrystalline and the ω-Al70Cu20Fe10 crystalline phases. RSC Adv. 6, 5367 (2016). https://doi.org/10.1039/C5RA21093C

    Article  ADS  Google Scholar 

  24. Peña Rodríguez, V.A., Rojas-Ayala, C., Medina Medina, J., Paucar Cabrera, P., Quispe-Marcatoma, J., Landauro, C.V., Rojas Tapia, J., Baggio-Saitovitch, E.M., Passamani, E.C.: Fe50Ni50 synthesized by high energy ball milling: A systematic study using X-ray diffraction, EXAFS and Mössbauer methods. Mater. Charact. 149, 249–254 (2019). https://doi.org/10.1016/j.matchar.2019.01.036

    Article  Google Scholar 

  25. Lee, S., Edalati, K., Iwaoka, H., Horita, Z., Ohtsuki, T., Ohkochi, T., Kotsugi, M., Kojima, T., Mizuguchi, M.: and Koki Takanashi: Formation of FeNi with L10-ordered structure using high-pressure torsion. Philos. Mag. 94(10), 639–646 (2014). https://doi.org/10.1080/09500839.2014.955546

    Article  ADS  Google Scholar 

  26. BrukerAXS. DIFFRACPlus TOPAS: TOPAS 4.2 User Manual, Bruker-AXS GmbH,.Karlsruhe, Germany (2008)

  27. Newville, M.: IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Rad. 8, 322–324 (2001). https://doi.org/10.1107/S0909049500016964

    Article  Google Scholar 

  28. Ravel, B., Newville, M.: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12(4), 537–541 (2005). https://doi.org/10.1107/S0909049505012719

    Article  Google Scholar 

  29. Peña Rodríguez, V.A., Quispe Marcatoma, J., Rojas Ayala, Ch., Baggio-Saitovitch, E.M., Passamani, E.C.: Local environments of Fe and Co in (Fe0.5Co0.5)75Si15B10 mechanically alloyed. J. Alloys and Compd. 45, 29–34 (2009). https://doi.org/10.1016/j.jallcom.2008.07.104

    Article  Google Scholar 

  30. Zabinsky, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C., Eller, M.J.: Multiple-scattering calculations of x-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995). https://doi.org/10.1103/PhysRevB.52.2995

    Article  ADS  Google Scholar 

  31. Ankudinov, A.L., Ravel, B., Rehr, J.J., Conradson, S.D.: Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998). https://doi.org/10.1103/PhysRevB.58.7565

    Article  ADS  Google Scholar 

  32. Müller, J.E., Jepsen, O., Wilkins, J.W.: X-ray absorption spectra: K-edge of 3d transition metals, L-edges of 3d and 4d metals and M-edges of palladium. Solid State Commun. 42(5), 365–368 (1982). https://doi.org/10.1016/0038-1098(82)90154-5

    Article  ADS  Google Scholar 

  33. Benitez Rodríguez, E.D., Rodríguez, H.B., Oyola Lozano, D., Rojas Martínez, Y.A., Pérez Alcázar, G.A.: Mössbauer study of alloy Fe67.5Ni32.5, prepared by mechanical alloying. Hyperfine Interact. 232, 87–95 (2015). https://doi.org/10.1007/s10751-015-1138-8

    Article  ADS  Google Scholar 

  34. Suryanarayana, C., Sharma, S.: Lattice contraction during amorphization by mechanical alloying. J. Appl. Phys. 104, 103503 (2008). https://doi.org/10.1063/1.3020531

    Article  ADS  Google Scholar 

  35. Hong, L.B., Fultz, B.: Two-phase coexistence in Fe–Ni alloys synthesized by ball milling. J. Appl. Phys. 79, 3946–3955 (1996). https://doi.org/10.1063/1.361821

    Article  ADS  Google Scholar 

  36. Lima, E., Drago, V.: Influence of chemical disorder on the magnetic behaviour and phase diagram of the FexNi1−x system. J. Magn. Magn. Mater. 280, 251–256 (2004). https://doi.org/10.1016/j.jmmm.2004.03.020

    Article  ADS  Google Scholar 

  37. Zhang, F.X., Jin, K., Zhao, S., Mu, S., Bei, H., Liu, J.C., Xue, H.Z., Popov, D., Park, C., Stocks, G.M., Weber, W.J., Zhang, Y.: X-ray absorption investigation of local structural disorder in Ni1-x Fex (x=0.10, 0.20, 0.35, and 0.50) alloys. J. Appl. Phys. 121, 165105 (2017). https://doi.org/10.1063/1.4982705

    Article  ADS  Google Scholar 

  38. Clarke, R.S., Jr., Scott, E.R.D.: Tetrataenite-ordered FeNi, a new mineral in meteorite. Am. Mineral. 65(7–8), 624–630 (1980)

    ADS  Google Scholar 

  39. Abdu, Y.A., Ericsson, T., Annersten, H., Dubrovinskaia, N.A., Dubrovinsky, L.S., Gimselseed, A.M.: Mössbauer studies on the metallic phases of Al Kidirate and New Haifa meteorites. Hyperfine Interact. (C) 5, 375–378 (2002). https://doi.org/10.1007/978-94-010-0281-3_93

    Article  Google Scholar 

  40. Scorzelli, R.B., Danon, J.: Mössbauer Spectroscopy andX-Ray Diffraction Studies of Fe-Ni Order-Disorder Processes in a 35% Ni Meteorite (Santa Catharina). Phys. Scr. 32(2), 143–148 (1985). https://doi.org/10.1088/0031-8949/32/2/010

    Article  ADS  Google Scholar 

  41. Lima, E., Jr., Drago, V.: A New Process to Produce Ordered Fe50Ni50 Tetrataenite. Phys. Stat. Sol. (a) 187(1), 119–124 (2001). https://doi.org/10.1002/1521-396X(200109)187:1%3c119::AID-PSSA119%3e3.0.CO;2-L

    Article  ADS  Google Scholar 

  42. Albertsen, J.F., Roy-Poulsen, N.O., Vistisen, L.: Ordered FeNi, Tetrataenite, and the Cooling Rate of Iron Meteorites Below 320 °C. Meteoritics 15, 258 (1980)

    ADS  Google Scholar 

  43. González, J.M., Pérez Alcazar, G.A., Zamora, L.E., Tabares, J.A., Bohórquez, A., Gancedo, J.R.: Development of magnetic softness in high-energy ball milling alloyed Fe50B50. J. Magn. Magn. Mater. 261, 337–346 (2003). https://doi.org/10.1016/S0304-8853(02)01321-5

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian Synchrotron Light Laboratory (LNLS) under proposal XAFS1 – 1304. The authors would like to acknowledge the financial support provided by the National Fund for Scientific and Technological Development, FONDECYT [contract 011-2014-FONDECYT], FAPERJ-Brazil (Emeritus fellowship, EBS, E26/210.715/2014, E-26/010.002990/2014 grants), FINEP, FAPES, CNPq, and Latin American Center of Physics. The authors would also like to acknowledge the San Marcos National University for providing research facilities and financial support [CSI-projects: 061301011-0801301011-091301031].

Author information

Authors and Affiliations

Authors

Contributions

V.A. Peña Rodríguez: Conceptualization, Formal analysis, Writing-Original draft preparation, Project administration, Funding acquisition. J. Medina Medina: Investigation, Validation, Data curation, Software, Resources. C. Rojas-Ayala: Software, Formal analysis, Investigation. P. Paucar Cabrera: Investigation. C.V. Landauro: Writing, reviewing and editing, Funding acquisition, Visualization. J. Quispe-Marcatoma: Investigation, Formal analysis, Resources. J. Rojas Tapia: Software, Visualization. E.M. Baggio-Saitovitch: Writing, reviewing and editing, Formal analysis, Conceptualization. E.C. Passamani: Writing, reviewing and editing, Formal analysis, Visualization.

Corresponding authors

Correspondence to V. A. Peña Rodríguez or J. Medina Medina.

Ethics declarations

Declaration of competing interest

The authors declare that they have no significant competing financial, professional, or personal interests in this manuscript submission.

Author agreement

The authors declare that this manuscript contains original scientific work and has not been published before elsewhere. All the authors listed have approved the final draft of the manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania

Edited by Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña Rodríguez, V.A., Medina Medina, J., Rojas-Ayala, C. et al. Nanostructured FeNiZrB powders synthesized by high-energy ball milling: structural and hyperfine characterizations. Hyperfine Interact 242, 27 (2021). https://doi.org/10.1007/s10751-021-01758-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01758-y

Keywords

Navigation