Skip to main content
Log in

Diffusion of Methylene Blue in Phantoms of Agar Using a Photoacoustic Technique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, the kinetics of diffusion of methylene blue in agar aqueous solution is studied using a photoacoustic technique. Two agar phantoms solutions in water with a relation of mass/volume of 0.01% and 0.05% were analyzed. The study was performed using a modified Rosencwaig photoacoustic cell that is enclosed by transparent windows, on both sides. The sample is deposited directly on top of the upper window. A red light beam, at a fixed modulation frequency, is sent through the lower window illuminating the sample and inducing the photoacoustic effect inside the closed chamber of the cell. At the beginning of the experiment, a droplet of 100μL of agar solution is deposited; afterwards, the signal stabilizes, and 10μL of methylene blue aqueous solution (0.0125 g · mL−1) is added to the surface of the agar. During the first seconds of the experiment, the photoacoustic signal amplitude increases followed by a gradual and long decay. Results for modulation frequencies in the range from 10Hz to 80Hz for both agar concentrations are presented. A simple theoretical approach is presented to analyze the experimental data. It is demonstrated that the kinetics of the process can be parameterized as a function of the changes of an effective optical absorption coefficient. From these results, the characteristic time, in which the dye diffusion process stabilizes, is obtained. It is found that this time is larger for samples with a higher agar concentration. These differences provide important results for biomedical sciences in which agar gels are used as phantoms resembling some of the properties of living organs and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madsen E., Hobson M., Shi H., Varghese T., Frank G.: Phys. Med. Biol. 50, 5597 (2005)

    Article  Google Scholar 

  2. Bauman M., Gillies G., Raghavan R., Brady M., Pedain C.: Nanotechnology 15, 92 (2004)

    Article  ADS  Google Scholar 

  3. Staples M., Daniel K., Michael J., Langer R.: Pharm. Res. 23, 5 (2006)

    Article  Google Scholar 

  4. Buchholz K., Marcelo A., Wissenbach D., Schirmer H., Krauth-Sieguel L., Gromer S.: Mol. Biochem. Parasitol. 160, 65 (2008)

    Article  Google Scholar 

  5. D. Almond, P. Patel, in Photothermal Science and Techniques, Physics and its Applications, ed. by E.R Dobbs, S.B. Palmer (Chapman and Hall, London, 1996)

  6. A. Mandelis, in Non-Destructive Evaluation: Progress in Photothermal and Photoacoustic Science and Technology, vol. 2 (PTR Prentice Hall, Englewood Cliffs, NJ, 1993)

  7. Vargas H., Miranda L.C.M.: Phys. Rep. 161, 43 (1988)

    Article  ADS  Google Scholar 

  8. Acosta-Avalos D., Alvarado-Gil J.J., Vargas H., Frías-Hernández J., Olalde-Portugal V., Miranda L.C.M.: Plant Sci. 119, 183 (1996)

    Article  Google Scholar 

  9. Frandas A., Paris D., Bissieux C., Chirtoc M., Antoniow J.S., Egée M.: Appl. Phys. B 71, 69 (2000)

    ADS  Google Scholar 

  10. Landa A., Alvarado-Gil J.J., Gutiérrez-Juárez J., Vargas-Luna M.: Rev. Sci. Instrum. 74, 377 (2003)

    Article  ADS  Google Scholar 

  11. Martínez-Torres P., Alvarado-Gil J.J.: Int. J. Thermophys. 28, 996 (2007)

    Article  Google Scholar 

  12. S.E. Bialkowski, in Photothermal Spectroscopy Methods for Chemical Analysis (John Wiley & Sons, Inc., New York, 1996)

  13. Fernelius N.C.: J. Appl. Phys. 51, 1756 (1980)

    Article  ADS  Google Scholar 

  14. Quimby R., Yen W.J.: J. Appl. Phys. 51, 1780 (1980)

    Article  ADS  Google Scholar 

  15. Teng Y.C., Royce B.S.H.: J. Opt. Soc. Am. B 70, 557 (1980)

    Article  ADS  Google Scholar 

  16. Wetsel G.C. Jr., McDonald F.A.: Appl. Phys. Lett. 30, 252 (1977)

    Article  ADS  Google Scholar 

  17. Vargas-Luna M., Gutiérrez-Juárez G., Rodríguez-Vizcaíno J.M., Varela-Nájera J.B., Rodríguez-Palencia J.M., Bernal-Alvarado J., Sosa M., Alvarado-Gil J.J.: J. Phys. D Appl. Phys. 35, 1532 (2002)

    Article  ADS  Google Scholar 

  18. Shen J., Mandelis A.: Rev. Sci. Instrum. 66, 10 (1995)

    Google Scholar 

  19. Matvienko A., Mandelis A.: Rev. Sci. Instrum. 77, 064906 (2006)

    Article  ADS  Google Scholar 

  20. H.S. Carslaw, in Introduction to the Theory of Fourier’s Series and Integrals (University of Michigan, Ann Arbor, MI, 2005)

  21. Pichardo J.L., Alvarado-Gil J.J.: J. Appl. Phys. 89, 4070 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Alvarado-Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilca-Quispe, L., Alvarado-Gil, J.J., Quintana, P. et al. Diffusion of Methylene Blue in Phantoms of Agar Using a Photoacoustic Technique. Int J Thermophys 31, 987–997 (2010). https://doi.org/10.1007/s10765-010-0763-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0763-3

Keywords

Navigation