Skip to main content
Log in

Effective Thermal Properties of Multilayered Systems with Interface Thermal Resistance in a Hyperbolic Heat Transfer Model

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

One-dimensional thermal wave transport in multilayered systems with an interface thermal resistance is studied under the framework of the Cattaneo–Vernotte hyperbolic heat conduction model, considering modulated heat excitation under Dirichlet and Neumann boundary conditions. For a single semi-infinite layer, analytical formulas useful in the measurement of its thermal relaxation time as well as additional thermal properties are presented. For a composite-layered system, in the thermally thin regime, with the Dirichlet boundary condition, the well known effective thermal resistance formula is obtained, while for the Neumann problem, only the heat capacity identity is found. In contrast, in the thermally thick case, an analytical expression for both Dirichlet and Neumann conditions is obtained for the effective thermal diffusivity of the whole system in terms of the thermal properties of the individual layers and their interface thermal resistance. The limits of applicability of this equation, in the thermally thick regime, are shown to provide useful and simple results in the characterization of layered systems and that they can be reduced to the results obtained using the Fourier approach. The role of the thermal relaxation time, the interface thermal resistance, and the implications of these results in the possibility of enhancement in heat transport are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torquato S.: Random Heterogeneous Materials. Springer-Verlag, New York (2001)

    Google Scholar 

  2. Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids. Oxford University Press, London (1959)

    Google Scholar 

  3. Leung W.P., Tam A.C.: J. Appl. Phys. 56, 153 (1984)

    Article  ADS  Google Scholar 

  4. Choi S.U.S., Zhang Z.G., Yu W., Lockwood F.E., Grulke E.A.: Appl. Phys. Lett. 79, 2252 (2001)

    Article  ADS  Google Scholar 

  5. Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J.: Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  6. Kaminski W.: ASME J. Heat Transf. 112, 555 (1990)

    Article  Google Scholar 

  7. Joseph D.D., Preziosi L.: Rev. Mod. Phys. 61, 41 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Tzou D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behavior. Taylor and Francis, New York (1997)

    Google Scholar 

  9. Sahoo R.K.: Cryogenics 34, 203 (1994)

    Article  Google Scholar 

  10. Vedavarz A., Kumar S., Moallemi M.K.: ASME J. Heat Transf. 116, 221 (1994)

    Article  Google Scholar 

  11. Cattaneo C.: Atti. Semin. Mat. Fis. Univ. Modena 3, 83 (1948)

    MathSciNet  Google Scholar 

  12. Vernotte P.: C.R. Hebdomadaires des Seances de l’Academie des Sciences 246, 3154 (1958)

    MathSciNet  Google Scholar 

  13. Ozisik M.N., Tzou D.Y.: ASME J. Heat Transf. 116, 526 (1994)

    Article  Google Scholar 

  14. Tzou D.Y.: J. Thermophys. Heat Transf. 9, 686 (1995)

    Article  Google Scholar 

  15. Tzou D.Y.: ASME J. Heat Transf. 117, 8 (1995)

    Article  Google Scholar 

  16. Ho J.-R., Kuo C.-P., Jiaung W.-S.: Int. J. Heat Mass Transf. 46, 55 (2003)

    Article  MATH  Google Scholar 

  17. Galovic S., Kotoski D.: J. Appl. Phys. 93, 3063 (2003)

    Article  ADS  Google Scholar 

  18. Wang L., Zhou X., Wei X.: Heat Conduction: Mathematical Models and Analytical Solutions. Springer-Verlag, Berlin, Heidelberg (2008)

    Google Scholar 

  19. Roetzel W., Putra N., Das S.K.: Int. J. Therm. Sci. 42, 541 (2003)

    Article  Google Scholar 

  20. Mitra K., Kumar S., Vedavarz A., Moallemi M.K.: ASME J. Heat Transf. 117, 568 (1995)

    Article  Google Scholar 

  21. Cheng L., Xu M.T., Wang L.Q.: Int. J. Heat Mass Transf. 51, 6018 (2008)

    Article  MATH  Google Scholar 

  22. Vadasz J.J., Govender S., Vadasz P.: Int. J. Heat Mass Transf. 48, 2673 (2005)

    Article  Google Scholar 

  23. Al-Nimr M.A., Naji M., Abdallah R.I.: Int. J. Thermophys. 25, 949 (2004)

    Article  Google Scholar 

  24. Dramicanin M.D., Ristovski Z.D., Djokovic V., Galovic S.: Appl. Phys. Lett. 73, 321 (1998)

    Article  ADS  Google Scholar 

  25. Khadrawi A.F., Al-Nimr M.A., Hammad M.: Int. J. Thermophys. 23, 581 (2002)

    Article  Google Scholar 

  26. Lucio J.L., Alvarado-Gil J.J., Zelaya-Angel O., Vargas H.: Phys. Status Solidi A 150, 695 (1995)

    Article  ADS  Google Scholar 

  27. Mansanares A.M., Vargas H., Galembeck F., Buijs J., Bicanic D.: J. Appl. Phys. 70, 7046 (1991)

    Article  ADS  Google Scholar 

  28. Marin E., Pichardo J.L., Cruz-Orea A., Diaz P., Torres-Delgado G., Delgadillo I., Alvarado-Gil J.J., Mendoza-Alvarez J.G., Vargas H.: J. Phys. D: Appl. Phys. 29, 981 (1996)

    Article  ADS  Google Scholar 

  29. Lor W.B., Chu H.S.: Int. J. Heat Mass Transf. 43, 653 (2000)

    Article  MATH  Google Scholar 

  30. J. Ordóñez-Miranda, J.J. Alvarado-Gil, ASME J. Heat Transf. (2010). doi:10.1115/1.4000748

  31. Ramadan K.: Int. J. Therm. Sci. 48, 14 (2009)

    Article  Google Scholar 

  32. Ramadan K., Al-Nimr M.A.: ASME J. Heat Transf. 130, 074501 (2008)

    Article  Google Scholar 

  33. Ramadan K., Al-Nimr M.A.: Heat Transf. Eng. 30, 677 (2009)

    Article  ADS  Google Scholar 

  34. Ramadan K., Al-Nimr M.A.: Int. J. Therm. Sci. 48, 1718 (2009)

    Article  Google Scholar 

  35. Tominaga T., Ito K.: Jpn. J. Appl. Phys. 27, 2392 (1988)

    Article  ADS  Google Scholar 

  36. Mansanares A.M., Bento A.C., Vargas H., Leite N.F., Miranda L.C.M.: Phys. Rev. B 42, 4477 (1990)

    Article  ADS  Google Scholar 

  37. Salazar A., Sánchez-Lavega A., Terrón J.M.: J. Appl. Phys. 84, 3031 (1998)

    Article  ADS  Google Scholar 

  38. Ordonez-Miranda J., Alvarado-Gil J.J.: Int. J. Therm. Sci. 48, 2053 (2009)

    Article  Google Scholar 

  39. Almond D.P., Patel P.M.: Photothermal Science and Techniques. Chapman and Hall, London (1996)

    Google Scholar 

  40. Mcdonald F.A., Westel G.C.: J. Appl. Phys. 49, 2313 (1978)

    Article  ADS  Google Scholar 

  41. Pichardo J.L., Alvarado-Gil J.J.: J. Appl. Phys. 89, 4070 (2001)

    Article  ADS  Google Scholar 

  42. Li B.-C., Zhang S.-Y.: J. Phys. D: Appl. Phys. 30, 1447 (1997)

    Article  ADS  Google Scholar 

  43. Salazar A.: Eur. J. Phys. 24, 351 (2003)

    Article  MATH  ADS  Google Scholar 

  44. Rosencwaig A., Gersho A.: J. Appl. Phys. 47, 64 (1976)

    Article  ADS  Google Scholar 

  45. Tzou D.Y.: ASME J. Heat Transf. 111, 232 (1989)

    Article  Google Scholar 

  46. Tzou D.Y.: Int. J. Eng. Sci. 29, 1167 (1991)

    Article  MATH  Google Scholar 

  47. Tzou D.Y.: ASME J. Appl. Mech. 59, 862 (1992)

    Article  MATH  Google Scholar 

  48. Tzou D.Y.: J. Thermophys. Heat Transf. 16, 30 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Alvarado-Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordóñez-Miranda, J., Alvarado-Gil, J.J. Effective Thermal Properties of Multilayered Systems with Interface Thermal Resistance in a Hyperbolic Heat Transfer Model. Int J Thermophys 31, 900–925 (2010). https://doi.org/10.1007/s10765-010-0777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0777-x

Keywords

Navigation