Skip to main content
Log in

Effective Thermal Conductivity of Metal–Dielectric Composites at the Non-dilute Limit

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Based on the Bruggeman integral principle and Ordonez-Miranda et al. (J. Appl. Phys. 111, 044319 (2012)) model, formulas for predicting the effective thermal conductivity of composites containing not only low but also high concentrations of spherical and cylindrical metallic particles embedded in a dielectric matrix are derived and analyzed. In the dilute limit of particles, the obtained results coincide with those previously reported in the literature. In the non-dilute limit, on the other hand, the thermal conductivity of the composites shows a remarkable enhancement, which increases with the relative radius of the particles with respect to the coupling length. It is shown that the effect of electron–phonon coupling on the thermal conductivity of composites gets strength at high-volume fractions of particles and is cancelled out for high interfacial thermal resistances. The proposed model could be useful for predicting the thermal conductivity of particulate composites with metallic particles with sizes from macro/micro- to nanoscales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  2. Minnich A., Chen G.: Appl. Phys. Lett. 91, 073105 (2007)

    Article  ADS  Google Scholar 

  3. Torquato S.: Random Heterogeneous Materials. Springer, New York (2001)

    Google Scholar 

  4. Nan C.W., Birringer R., Clarke D.R., Gleiter H.: J. Appl. Phys. 81, 6692 (1997)

    Article  ADS  Google Scholar 

  5. Nan C.W.: J. Appl. Phys. 76, 1155 (1994)

    Article  ADS  Google Scholar 

  6. Kittel C.: Introduction to Solid State Physics, 8th edn. Wiley, Hoboken, NJ (2005)

    Google Scholar 

  7. Ordonez-Miranda J., Yang R.G., Alvarado-Gil J.J.: Appl. Phys. Lett. 98, 233111 (2011)

    Article  ADS  Google Scholar 

  8. Ordonez-Miranda J., Yang R., Alvarado-Gil J.J.: J. Appl. Phys. 111, 044319 (2012)

    Article  ADS  Google Scholar 

  9. Bruggeman D.A.G.: Ann. Phys. 24, 636 (1935)

    Article  Google Scholar 

  10. Ordonez-Miranda J., Alvarado-Gil J.J., Medina-Ezquivel R.: Int. J. Thermophys. 31, 975 (2010)

    Article  ADS  Google Scholar 

  11. Yonezawa F., Cohen M.H.: J. Appl. Phys. 54, 2895 (1983)

    Article  ADS  Google Scholar 

  12. Majumdar A., Reddy P.: Appl. Phys. Lett. 84, 4768 (2004)

    Article  ADS  Google Scholar 

  13. Qiu T.Q., Tien C.L.: J. Heat Transf. Trans. ASME 115, 835 (1993)

    Article  Google Scholar 

  14. Yang R.G., Chen G.: Phys. Rev. B 69, 10 (2004)

    Google Scholar 

  15. Yang R.G., Chen G., Dresselhaus S.M.: Phys. Rev. B 72, 125418 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ordonez-Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordonez-Miranda, J., Alvarado-Gil, J.J. & Yang, R. Effective Thermal Conductivity of Metal–Dielectric Composites at the Non-dilute Limit. Int J Thermophys 33, 2118–2124 (2012). https://doi.org/10.1007/s10765-012-1235-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1235-8

Keywords

Navigation