Skip to main content
Log in

Effect of the Electron–Phonon Coupling on the Effective Thermal Conductivity of Metallic Bilayers

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Systems consisting of metallic layers are commonly used in many applications for microelectronics, data storage, protection coatings, and microelectro-mechanical systems. The physical properties of such systems are strongly determined by the flow of the electron and phonon gases and their interactions. In this study, the effective thermal conductivity of a metal–metal bilayer system is studied using the two-temperature model of heat conduction. By defining the total interfacial thermal resistance, it is shown that the thermal conductivity of the bilayer system depends on the ratio between the thicknesses of the metallic layers and their intrinsic coupling length and it has a simple interpretation as the sum of thermal resistances in series. It is demonstrated that the total interfacial thermal resistance can be minimized by choosing appropriately the thermal and geometrical properties of the component layers. The proposed approach could be useful for thermally characterizing and guiding the design of novel metal–metal-layered systems involved in diverse technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G.D. Mahan, J.O. Sofo, M. Bartkowiak, J. Appl. Phys. 83, 4683 (1998)

    Article  ADS  Google Scholar 

  2. G.D. Mahan, L.M. Woods, Phys. Rev. Lett. 80, 4016 (1998)

    Article  ADS  Google Scholar 

  3. B. Stärk, P. Krüger, J. Pollmann, Phys. Rev. B: Condens. Matter 81, 035321 (2010)

    Article  ADS  Google Scholar 

  4. V. Rawat, Y.K. Koh, D.G. Cahill, T.D. Sands, J. Appl. Phys. 105, 024909 (2009)

    Article  ADS  Google Scholar 

  5. V. Rawat, T. Sands, J. Appl. Phys. 100, 064901 (2006)

    Article  ADS  Google Scholar 

  6. S. Murad, I.K. Puri, Appl. Phys. Lett. 92, 133105 (2008)

    Article  ADS  Google Scholar 

  7. M. Zebarjadi, Z.X. Bian, R. Singh, A. Shakouri, R. Wortman, V. Rawat, T. Sands, J. Electron. Mater. 38, 960 (2009)

    Article  ADS  Google Scholar 

  8. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, London, 1959)

    Google Scholar 

  9. P.E. Hopkins, J.L. Kassebaum, P.M. Norris, J. Appl. Phys. 105, 023710 (2009)

    Article  ADS  Google Scholar 

  10. A. Majumdar, P. Reddy, Appl. Phys. Lett. 84, 4768 (2004)

    Article  ADS  Google Scholar 

  11. K.H. Yoo, A.C. Anderson, Low Temp. Phys. 63, 269 (1986)

    Article  ADS  Google Scholar 

  12. J. Ordonez-Miranda, R.G. Yang, J.J. Alvarado-Gil, J. Appl. Phys. 109, 094310 (2011)

    Article  ADS  Google Scholar 

  13. T.Q. Qiu, C.L. Tien, J. Heat Transf.: Trans. ASME 115, 835 (1993)

    Article  Google Scholar 

  14. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)

    Article  ADS  Google Scholar 

  15. S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  16. M.I. Kaganov, I.M. Lifshitz, M.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)

    MATH  Google Scholar 

  17. D.Y. Tzou, Macro- to Microscale Heat Transfer: the Lagging Behavior (Taylor & Francis, Washington, DC, 1997)

    Google Scholar 

  18. P.L. Kapitza, J. Phys. (USSR) 4, 181 (1941)

    Google Scholar 

  19. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2003)

    Article  ADS  Google Scholar 

  20. J.G. Fujimoto, J.M. Liu, E.P. Ippen, N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984)

    Article  ADS  Google Scholar 

  21. P.M. Norris, A.P. Caffrey, R.J. Stevens, J.M. Klopf, J.T. McLeskey, A.N. Smith, Rev. Sci. Instrum. 74, 400 (2003)

    Article  ADS  Google Scholar 

  22. P. Chantrenne, M. Raynaud, D. Baillis, J.L. Barrat, Microscale Thermophys. Eng. 7, 117 (2003)

    Article  Google Scholar 

  23. M. Kanskar, M.N. Wybourne, Phys. Rev. B 50, 168 (1994)

    Article  ADS  Google Scholar 

  24. N. Stojanovic, D.H.S. Maithripala, J.M. Berg, M. Holtz, Phys. Rev. B 82, 075418 (2010)

    Article  ADS  Google Scholar 

  25. J.L. Lucio, J.J. Alvarado-Gil, O. Zelaya-Angel, H. Vargas, Phys Status Solidi A: Appl. Res. 150, 695 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ordonez-Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ordonez-Miranda, J., Alvarado-Gil, J.J. & Yang, R. Effect of the Electron–Phonon Coupling on the Effective Thermal Conductivity of Metallic Bilayers. Int J Thermophys 34, 1817–1827 (2013). https://doi.org/10.1007/s10765-013-1392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1392-4

Keywords

Navigation