Skip to main content
Log in

Thermal Resistance Formulation of Fourier Equation and Its Application in the Study of Inhomogeneous Materials and Inverse Problems

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, considering that all the thermal properties of a sample depend on the position, it is shown that the Fourier heat transport equation can be written in terms of just the square of the thermal effusivity, by introducing the thermal resistance as a new variable. The conditions, in which analytical solutions of this equation can be obtained, are discussed. Based on these results, an inversion method is proposed to retrieve the profile of the thermal property profiles, if the surface temperature is provided. The method requires the assumption of a local thermal-effusivity profile, such that the temperature profile can be analytically obtained, to generate a global thermal-effusivity profile, which is independent of the initial assumed profile. Applying this method to a pair of simple but representative cases of one-dimensional layered systems, the accuracy and stability of the method is verified. In particular, the noise sensitivity is investigated by carrying out the inversion procedure with white Gaussian noise added to the simulated experimental data. The proposed approach could be useful for the development of methodologies to interpret experimental data and to retrieve the in-depth variations of thermal properties of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, London, 1959)

    Google Scholar 

  2. M.D. Dramicanin, Z.D. Ristovski, V. Djokovic, S. Galovic, Appl. Phys. Lett. 73, 321 (1998)

    Article  ADS  Google Scholar 

  3. S. Galovic, D. Kotoski, J. Appl. Phys. 93, 3063 (2003)

    Article  ADS  Google Scholar 

  4. D.D. Joseph, L. Preziosi, Rev. Mod. Phys. 61, 41 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A.M. Mansanares, A.C. Bento, H. Vargas, N.F. Leite, L.C.M. Miranda, Phys. Rev. B 42, 4477 (1990)

    Article  ADS  Google Scholar 

  6. E. Marin, J.L. Pichardo, A. Cruz-Orea, P. Diaz, G. Torres-Delgado, I. Delgadillo, J.J. Alvarado-Gil, J.G. Mendoza-Alvarez, H. Vargas, J. Phys. D: Appl. Phys. 29, 981 (1996)

    Article  ADS  Google Scholar 

  7. L. Wang, X. Zhou, X. Wei, Heat Conduction: Mathematical Models and Analytical Solutions (Springer, Berlin, 2008)

    Google Scholar 

  8. C. Glorieux, R.L. Voti, J. Thoen, M. Bertolotti, C. Sibilia, Inverse Prob. 15, 1149 (1999)

    Article  ADS  MATH  Google Scholar 

  9. C. Glorieux, R.L. Voti, J. Thoen, M. Bertolotti, C. Sibilia, J. Appl. Phys. 85, 7059 (1999)

    Article  ADS  Google Scholar 

  10. A. Mandelis, F. Funak, M. Munidasa, J. Appl. Phys. 80, 5570 (1996)

    Article  ADS  Google Scholar 

  11. A. Mandelis, S.B. Peralta, J. Thoen, J. Appl. Phys. 70, 1761 (1991)

    Article  ADS  Google Scholar 

  12. V. Gusev, T. Velinov, K. Bransalov, Semicond. Sci. Technol. 4, 20 (1989)

    Article  ADS  Google Scholar 

  13. J.C. Krapez, J. Appl. Phys. 87, 4514 (2000)

    Article  ADS  Google Scholar 

  14. J. Fivez, J. Thoen, J. Phys. IV 4, 283 (1994)

    Google Scholar 

  15. J. Fivez, J. Thoen, J. Appl. Phys. 75, 7696 (1994)

    Article  ADS  Google Scholar 

  16. J. Fivez, J. Thoen, J. Appl. Phys. 79, 2225 (1996)

    Article  ADS  Google Scholar 

  17. A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. (Chapman and Hall/CRC, Boca Raton, 2003)

    MATH  Google Scholar 

  18. R. Li Voti, G.L. Liakhoua, S. Paoloni, C. Sibilia, M. Bertolotti, J. Optoelectron. Adv. Mater. 3, 779 (2001)

    Google Scholar 

  19. R. Li Voti, C. Sibilia, M. Bertolotti, Int. J. Thermophys. 26, 1833 (2005)

    Article  ADS  Google Scholar 

  20. C. Glorieux, J. Thoen, J. Appl. Phys. 80, 6510 (1996)

    Article  ADS  Google Scholar 

  21. T.T.N. Lan, U. Seidel, H.G. Walther, J. Appl. Phys. 77, 4739 (1995)

    Article  ADS  Google Scholar 

  22. R. Li Voti, G.L. Liakhou, S. Paoloni, C. Sibilia, M. Bertolotti, Anal. Sci. 17, s414 (2001)

    Google Scholar 

  23. J.-C. Krapez, R. Li Voti, Anal. Sci. 17, s417 (2001)

    Article  Google Scholar 

  24. R. Li Voti, G.L. Liakhou, S. Paoloni, E. Scotto, C. Sibilia, M. Bertolotti, in Proceedings of the Tenth International Conference on Photoacoustic and Photothermal Phenomena (AIP Conference Proceedings, Rome, 1998), pp. 37–39

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ordonez-Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado-Leaños, J.J., Ordonez-Miranda, J. & Alvarado-Gil, J.J. Thermal Resistance Formulation of Fourier Equation and Its Application in the Study of Inhomogeneous Materials and Inverse Problems. Int J Thermophys 34, 1457–1465 (2013). https://doi.org/10.1007/s10765-013-1508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1508-x

Keywords

Navigation