Skip to main content
Log in

Information-Probabilistic Description of the Universe

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We describe the universe as a single entangled ensemble of quantum particles. The total entropy of this world ensemble, which can be expressed as a sum of information, thermodynamic and entanglement components, is assumed to be always zero. This condition suggests information quantization, which we associate with the Planck’s action. Then the entropy neutrality condition for the universe leads to the zero-action principle. We show that the main concepts of classical space-time and gravity naturally emerge in this picture. A generalized least action principle, which embraces the maximal entropy principles of information theory, is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Throughout the paper we measure entropies in nuts and assume the Boltzmann’s constant k B =1. To convert the entropy into bits one can perform the standard replacement, ln→ ln2 log2.

References

  1. Carroll, R.: On the Emergence Theme of Physics. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  2. de Broglie, L.: Ann. Inst. Poincare A 1, 1 (1964)

    MathSciNet  Google Scholar 

  3. Sakharov, A.D.: Sov. Phys. Dokl. 12, 1040 (1968). (Gen. Rel. Grav. 32 (2000) 365)

    ADS  Google Scholar 

  4. Bekenstein, J.D.: Rev. Phys. D 7, 2333 (1973)

    Article  MathSciNet  Google Scholar 

  5. Bardeen, J.M., Carter, B., Hawking, S.W.: Comm. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hawking, S.W.: Comm. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  7. Hawking, S.W.: Comm. Math. Phys. 46, 206 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  8. Connes, A., Rovelli, C.: Class. Quant. Grav. 11, 2899 (1994). arXiv:gr-qc/9406019

    Article  ADS  MathSciNet  Google Scholar 

  9. Rovelli, C., Smerlak, M.: Class. Quant. Grav. 28, 075007 (2011). arXiv:1005.2985 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  10. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995). arXiv:9504004 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  11. Padmanabhan, T.: Class. Quant. Grav. 21, 4485 (2004). arXiv:gr-qc/0308070

    Article  ADS  MathSciNet  Google Scholar 

  12. Padmanabhan, T.: Rep. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

    Article  ADS  Google Scholar 

  13. Padmanabhan, T.: J. Phys. Conf. Ser. 306, 012001 (2011). arXiv:1012.4476 [gr-qc]

    Article  ADS  Google Scholar 

  14. Padmanabhan, T.: Entropy 17, 7420 (2015). arXiv:1508.06286 [gr-qc]

    Article  ADS  Google Scholar 

  15. Verlinde, E.P.: JHEP 1104, 029 (2011). arXiv:1001.0785 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  16. Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York (1965)

    Google Scholar 

  17. Waldram, J.R.: The Theory of Thermodynamics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  18. Shannon, C.E.: Bell Sys. Tech. J. 27, 379 (1948)

    Article  MathSciNet  Google Scholar 

  19. Bengtsson, I., žyczkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  20. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009). arXiv:quant-ph/0702225

    Article  ADS  MathSciNet  Google Scholar 

  21. Eisert, J., Cramer, M., Plenio, M.B.: Rev. Mod. Phys. 82, 277 (2010). arXiv:0808.3773 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  22. Sondhi, S.L., Girvin, S.M., Carini, J.P., Shahar, D.: Rev. Mod. Phys. 69, 315 (1997). arXiv:cond-mat/9609279

    Article  ADS  Google Scholar 

  23. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  24. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  25. Srednicki, M.: Phys. Rev. Lett. 71, 666 (1993). arXiv:hep-th/9303048

    Article  ADS  MathSciNet  Google Scholar 

  26. Solodukhin, S.N.: Living Rev. Rel. 14, 8 (2011). arXiv:1104.3712 [hep-th]

    Google Scholar 

  27. Deutsch, J.M., Li, H., Sharma, A.: Phys. Rev. E 87, 042135 (2013). arXiv:1202.2403 [quant-ph]

    Article  ADS  Google Scholar 

  28. Chirco, G., Haggard, H.M., Riello, A., Rovelli, C.: Phys. Rev. D 90, 044044 (2014). arXiv:1401.5262 [gr-qc]

    Article  ADS  Google Scholar 

  29. Callan, C.G. Jr., Wilczek, F.: Phys. Lett. B 333, 55 (1994). arXiv:hep-th/9401072

    Article  ADS  MathSciNet  Google Scholar 

  30. Padmanabhan, T.: Phys. Rev. D 82, 124025 (2010). arXiv:1007.5066 [gr-qc]

    Article  ADS  Google Scholar 

  31. Nesterov, D., Solodukhin, S.N.: JHEP 1009, 041 (2010). arXiv:1008.0777 [hep-th]

    Article  ADS  Google Scholar 

  32. Schlögl, F.: Am. J. Phys. 78, 7 (2010)

    Article  ADS  Google Scholar 

  33. Wilde, M.M.: Quantum Information Theory (Cambridge University Press, Cambridge 2013). arXiv:1106.1445 [quant-ph]

  34. Landauer, R.: Phys. Today 44, 23 (1991)

    Article  ADS  Google Scholar 

  35. Wootters, W.K., Zurek, W.H.: Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  36. Wootters, W.K., Zurek, W.H.: Phys. Today 62, 76 (2009)

    Article  Google Scholar 

  37. Pati, A.K., Braunstein, S.L.: Nature 404, 164 (2000). arXiv:quant-ph/9911090

    ADS  Google Scholar 

  38. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Phys. Rev. Lett 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  39. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002). arXiv:quant-ph/0102117

    Article  ADS  Google Scholar 

  40. Plenio, M.B.: Phys. Rev. Lett. 95, 090503 (2005). arXiv:quant-ph/0505071

    Article  ADS  MathSciNet  Google Scholar 

  41. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009). arXiv:quant-ph/0702225

    Article  ADS  MathSciNet  Google Scholar 

  42. Singleton, D., Vagenas, E.C., Zhu, T., Ren, J.-R.: JHEP 1008, 089 (2010)

    Article  ADS  Google Scholar 

  43. Singleton, D., Vagenas, E.C., Zhu, T., Ren, J.-R.: Erratum: JHEP 1101, 021 (2011). arXiv:1005.3778 [gr-qc]

    ADS  Google Scholar 

  44. Calabrese, P., Cardy, J., Tonni, E.: Phys. Rev. Lett. 109, 130502 (2012). arXiv:1206.3092 [cond-mat.stat-mech]

    Article  ADS  Google Scholar 

  45. Singleton, D., Vagenas, E.C., Zhu, T.: JHEP 1405, 074 (2014). arXiv:1311.2015 [gr-qc]

    Article  ADS  Google Scholar 

  46. Rangamani, M., Rota, M.: JHEP 1410, 60 (2014). arXiv:1406.6989 [hep-th]

    Article  ADS  Google Scholar 

  47. Kanno, S., Shock, J.P., Sodaz, J.: JCAP 1503, 015 (2015). arXiv:1412.2838 [hep-th]

    Article  ADS  Google Scholar 

  48. Calabrese, P., Cardy, J.L.: J. Stat. Mech. 0406, P06002 (2004). arXiv:hep-th/0405152

    Google Scholar 

  49. Calabrese, P., Cardy, J.L.: J. Phys. A 42, 504005 (2009). arXiv:0905.4013 [cond-mat.stat-mech]

    Article  MathSciNet  Google Scholar 

  50. Holzhey, C., Larsen, F., Wilczek, F.: Nucl. Phys. B 424, 443 (1994). arXiv:hep-th/9403108

    Article  ADS  MathSciNet  Google Scholar 

  51. Horodecki, M., Oppenheim, J., Winter, A.: Nature 436, 673 (2005). arXiv:quant-ph/0505062

    Article  ADS  Google Scholar 

  52. del Rio, L., Aberg, J., Renner, R., Dahlsten, O., Vedral, V.: Nature 474, 61 (2011). arXiv:1009.1630 [quant-ph]

    Article  Google Scholar 

  53. Song, D.: Int. J. Theor. Phys. 53, 1369 (2014). arXiv:1302.6141 [physics.gen-ph]

    Article  Google Scholar 

  54. Cerf, N.J., Adami, C.: Phys. Rev. Lett. 79, 5194 (1997). arXiv:quant-ph/9512022

    Article  ADS  MathSciNet  Google Scholar 

  55. Zeilinger, A.: Found. Phys. 29, 631 (1999)

    Article  MathSciNet  Google Scholar 

  56. Zeilinger, A.: Rev. Mod. Phys. 71, S288 (1999)

    Article  Google Scholar 

  57. Brukner, C., Zeilinger, A.: Phys. Rev. Lett. 83, 3354 (1999). arXiv:quant-ph/0005084

    Article  ADS  MathSciNet  Google Scholar 

  58. Brukner, C., Zeilinger, A.: Phys. Rev. A 63, 022113 (2001). arXiv:quant-ph/0006087

    Article  ADS  Google Scholar 

  59. Brukner, C., Zeilinger, A.: In: Castell, L., Ischebeck, O. (eds.) Time, Quantum, Information. (Springer, Berlun 2003), arXiv:quant-ph/0212084

  60. Penrose, R.: In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey. (Cambridge Univ. Press, Cambridge 1979)

  61. Penrose, R.: In: Hawking, S.W., Israel, W. (eds.) 300 Years of Gravitation. (Cambridge Univ. Press, Cambridge 1979)

  62. Penrose, R.: The Big Bang and its Thermodynamic Legacy in Road to Reality (Vintage Books, London 2004)

  63. Lineweaver, C.H., Egan, C.A.: Phys. Life Rev. 5, 225 (2008)

    Article  ADS  Google Scholar 

  64. Lineweaver, C.H., Egan, C.A.: Astrophys. J. 710, 1825 (2010). arXiv:0909.3983 [astro-ph.CO]

    Article  ADS  Google Scholar 

  65. Hwang, W.-Y.: Nat. Sci. 6, 540 (2014). arXiv:0806.2749 [quant-ph]

    Google Scholar 

  66. Araki, H., Lieb, E.H.: Commun. Math. Phys 18, 160 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  67. Kish, L.B.: Fluct. Noise Lett. 7, C51 (2007). arXiv:0711.1197 [physics.gen-ph]

    Article  Google Scholar 

  68. Kish, L.B., Granqvist, C.G.: Proc. IEEE 9, 1895 (2013). arXiv:1309.7889 [physics.class-ph]

    Article  Google Scholar 

  69. Herrera, L.: Fluc. Noise Lett. 13, 1450002 (2014). arXiv:1403.4511 [gr-qc]

    Article  Google Scholar 

  70. Landauer, R.: IBM J. Res. Develop 5, 183 (1961)

    Article  MathSciNet  Google Scholar 

  71. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Nature 483, 187 (2012)

    Article  ADS  Google Scholar 

  72. Brillouin, L.: J. Appl. Phys. 24, 1152 (1953)

    Article  ADS  Google Scholar 

  73. Brillouin, L.: Science and Information Theory (Academic, New York 1962)

  74. Brillouin, L.: Scientific Uncertainty and Information (Academic, New York 1964)

  75. Unruh, W.G.: Phil. Trans. R. Soc. A 370, 4454 (2012). arXiv:1205.6750 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  76. Jonsson, R.H., Martin-Martinez, E., Kempf, A.: Phys. Rev. Lett. 114, 110505 (2015). arXiv:1405.3988 [quant-ph]

    Article  ADS  Google Scholar 

  77. Annila, A.: Entropy 12, 2333 (2010). arXiv:1005.3854 [physics.gen-ph]

    Article  ADS  MathSciNet  Google Scholar 

  78. Feynman, R.P., Morinigo, F.B., Wagner, G.: Feynman Lectures on Gravitation (Addison-Wesley, Reading 1995)

  79. Hawking, S.: A Brief History of Time. Bantam, Toronto (1988)

    Google Scholar 

  80. Gogberashvili, M.: Eur. Phys. J. C 54, 671 (2008). arXiv:0707.4308 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  81. Gogberashvili, M.: Eur. Phys. J. C 63, 317 (2009). arXiv:0807.2439 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  82. Gogberashvili, M., Kanatchikov, I.: Int. J. Theor. Phys. 51, 985 (2012). arXiv:1012.5914 [physics.gen-ph]

    Article  Google Scholar 

  83. Gogberashvili, M.: Int. J. Theor. Phys. 50, 2391 (2011). arXiv:1008.2544 [gr-qc]

    Article  Google Scholar 

  84. Jaynes, E.T.: Phys. Rev. 106, 620 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  85. Jaynes, E.T.: Amer. J. Phys. 33, 391 (1965)

    Article  ADS  Google Scholar 

  86. Jaynes, E.T.: In: Rosenkrantz, R.D. (ed.) Papers on Probability, Statistics and Statistical Physics. (Reidel, Dordrecht 1983)

  87. Jaynes, E.T.: In: Smith, C.R., Grandy, W.T. Jr. (eds.) Maximum Entropy and Bayesian Methods in Inverse Problems. (Reidel, Dordrecht 1985)

  88. Stuart, A., Ord, K.: Kendall’s Advanced Theory of Statistics, Volume I: Distribution Theory, Sec. 8.7 (Arnold, London 1994)

  89. Facchi, P., Pascazio, S.: J. Phys. A 41, 493001 (2008). arXiv:0903.3297 [math-ph]

    Article  MathSciNet  Google Scholar 

  90. Lieb, E.H., Robinson, D.W.: Commun. Math. Phys 28, 251 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  91. Wang, Q.A.: Chaos, Solit. Fract. 23, 1253 (2004). arXiv:cond-mat/0405373

    Article  ADS  Google Scholar 

  92. Wang, Q.A.: Chaos, Solit. Fract. 26, 1045 (2005). arXiv:cond-mat/0412360

    Article  ADS  Google Scholar 

  93. Wang, Q.A.: Astrophys. Space Sci. 305, 273 (2006). arXiv:cond-mat/0312329

    Article  ADS  Google Scholar 

  94. Badiali, J.P.: J. Phys. A 39, 7175 (2006). arXiv:gr-qc/0505050

    Article  ADS  MathSciNet  Google Scholar 

  95. Caticha, A.: J. Phys. A 44, 225303 (2011). arXiv:1005.2357 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  96. Lashkari, N., McDermott, M.B., Van Raamsdonk, M., 2014: JHEP 1404, 195. arXiv:1308.3716 [hep-th]

  97. Nozaki, M., Numasawa, T., Prudenziati, A., Takayanagi, T.: Phys. Rev. D 88, 026012 (2013). arXiv:1304.7100 [hep-th]

    Article  ADS  Google Scholar 

  98. Bhattacharya, J., Takayanagi, T.: JHEP 2013, 219 (2013). arXiv:1308.3792 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  99. Guica, M., Hartman, T., Myers, R.C., Van Raamsdonk, M.: JHEP 2014, 51 (2014). arXiv:1312.7856 [hep-th]

    MathSciNet  Google Scholar 

  100. Ball, J.L., Fuentes-Schuller, I., Schuller, F.P.: Phys. Lett. A 359, 550 (2006). arXiv:quant-ph/0506113

    Article  ADS  MathSciNet  Google Scholar 

  101. Menicucci, N.C.: Phys. Rev. D 79, 044027 (2009). arXiv:0711.3066 [quant-ph]

    Article  ADS  Google Scholar 

  102. Nambu, Y., Ohsumi, Y.: Phys. Rev. D 84, 044028 (2011). arXiv:1105.5212 [gr-qc]

    Article  ADS  Google Scholar 

  103. Albrecht, A., Bolis, N., Holman, R.: JHEP 2014, 93 (2014). arXiv:1408.6859 [hep-th]

    Article  MathSciNet  Google Scholar 

  104. Poincaré, H.: La Science Et l’Hypothèse (Flammarion, Paris 1902)

  105. Hertz, H.: The Principles of Mechanics, Presented in a New Form. Dover, New York (1956)

    Google Scholar 

  106. Berdichevsky, V.: Variational Principles of Continuum Mechanics. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Shota Rustaveli National Science Foundation grant ST 09_798_4−100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Gogberashvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogberashvili, M. Information-Probabilistic Description of the Universe. Int J Theor Phys 55, 4185–4195 (2016). https://doi.org/10.1007/s10773-016-3045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3045-4

Keywords

Navigation