Skip to main content
Log in

Black Hole Information Problem and Wave Bursts

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By reexamination of the boundary conditions of wave equation on a black hole horizon it is found not harmonic, but real-valued exponentially time-dependent solutions. This means that quantum particles probably do not cross the Schwarzschild horizon, but are absorbed and some are reflected by it, what potentially can solve the famous black hole information paradox. To study this strong gravitational lensing we are introducing an effective negative cosmological constant between the Schwarzschild and photon spheres. It is shown that the reflected particles can obtain their additional energy in this effective AdS space and could explain properties of some unusually strong signals, like LIGO events, gamma ray and fast radio bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. LIGO Scientific and Virgo Collaborations: Phys. Rev. Lett. 116, 061102 (2016). arXiv:abs/1602.03837 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  2. LIGO Scientific and Virgo Collaborations: Phys. Rev. Lett. 116, 241103 (2016). arXiv:abs/1606.04855 [gr-qc]

    Article  ADS  Google Scholar 

  3. Piran, T.: Phys. Rept. 314, 575 (1999). arXiv:abs/astro-ph/9810256

    Article  ADS  Google Scholar 

  4. Meszaros, P.: Rept. Prog. Phys. 69, 2259 (2006). arXiv:abs/astro-ph/0605208

    Article  ADS  Google Scholar 

  5. Kumar, P., Zhang, B.: Phys. Rept. 561, 1 (2014). arXiv:abs/1410.0679 [astro-ph.HE]

    Article  ADS  Google Scholar 

  6. Lorimer, D.R., Bailes, M., McLaughlin, M.A., Narkevic, D.J., Crawford, F.: Science 318, 777 (2007). arXiv:abs/0709.4301 [astro-ph]

    Article  ADS  Google Scholar 

  7. Thornton, D. et al.: Science 341, 53 (2013). arXiv:abs/1307.1628 [astro-ph.HE]

    Article  ADS  Google Scholar 

  8. Keane, E.F. et al.: Nature 530, 453 (2016). arXiv:abs/1602.07477 [astro-ph.HE]

    Article  ADS  Google Scholar 

  9. Schneider, P., Ehlers, J., Falco, E. E.: Gravitational Lenses. Springer, Berlin (1992)

    Google Scholar 

  10. Schneider, P., Kochanek, C., Wambsganss, J.: Gravitational Lensing: Strong, Weak and Micro. Springer, Berlin (2006)

    Google Scholar 

  11. Darwin, C.: Proc. R. Soc. London A 249, 180 (1959). ibid. 263, 39 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  12. Atkinson, R.: Astron. J. 70, 517 (1965)

    Article  ADS  Google Scholar 

  13. Frittelli, S., Kling, T.P., Newman, E.T.: Phys. Rev. D 61, 064021 (2000). arXiv:abs/gr-qc/0001037

    Article  ADS  MathSciNet  Google Scholar 

  14. Perlick, V.: Living Rev. Rel. 7, 9 (2004)

    Article  Google Scholar 

  15. Virbhadra, K.S., Ellis, G.F.R.: Phys. Rev. D 62, 084003 (2000). arXiv:abs/astro-ph/9904193

    Article  ADS  MathSciNet  Google Scholar 

  16. Virbhadra, K.S.: Phys. Rev. D 79, 083004 (2009). arXiv:abs/0810.2109 [gr-qc]

    Article  ADS  Google Scholar 

  17. Gogberashvili, M. arXiv:abs/1712.02637 [gr-qc]

  18. Marolf, D.: Rep. Prog. Phys. 80, 092001 (2017). arXiv:abs/1703.02143 [gr-qc]

    Article  ADS  Google Scholar 

  19. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon, New York (1983)

    MATH  Google Scholar 

  20. Starobinskii, A. A.: Sov. Phys. JETP 37, 28 (1973)

    ADS  Google Scholar 

  21. Matzner, R. A.: J. Mat. Phys. 9, 163 (1968)

    Article  ADS  Google Scholar 

  22. Khelashvili, A., Nadareishvili, T.: Am. J. Phys. 79, 668 (2011). arXiv:abs/1009.2694 [quant-ph]

    Article  ADS  Google Scholar 

  23. Khelashvili, A.: Phys. Part. Nucl. Lett. 12, 11 (2015). arXiv:abs/1502.04008 [hep-th]

    Article  Google Scholar 

  24. Cantelaube, Y.C., Khelif, A.L.: J. Math. Phys. 51, 053518 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. Jackson, J. D.: Classical Electrodynamics. Wiley, New York (1999)

    MATH  Google Scholar 

  26. Qin, Y. -P.: Sci. China Phys. Mech. Astron. 55, 381 (2012)

    Article  ADS  Google Scholar 

  27. Damour, T., Ruffini, R.: Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  28. Sannan, S.: Gen. Rel. Grav. 20, 239 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  29. Elizalde, E.: Phys. Rev. D 36, 1269 (1987)

    Article  ADS  Google Scholar 

  30. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 024007 (1999). arXiv:abs/gr-qc/9812028

    Article  ADS  MathSciNet  Google Scholar 

  31. Goldstein, H.: Classical Mechanics. Addison-Wesley, New York (1950)

    MATH  Google Scholar 

  32. Motz, L., Selzer, A.: Phys. Rev. 133, B1622 (1964)

    Article  ADS  Google Scholar 

  33. Bohm, D.: Phys. Rev. 85, 166 (1952)

    Article  ADS  Google Scholar 

  34. Nelson, E.: Quantum Fluctuations. Princeton Univ. Press, Princeton (1985)

    MATH  Google Scholar 

  35. Hall, M.J.W., Reginatto, M.: J. Phys. A 35, 3289 (2002). arXiv:abs/quant-ph/0102069

    Article  ADS  MathSciNet  Google Scholar 

  36. Grössing, G.: Phys. Lett. A 372, 4556 (2008). arXiv:abs/0711.4954 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  37. Grössing, G.: Found. Phys. Lett. 17, 343 (2004). arXiv:abs/quant-ph/0311109

    Article  MathSciNet  Google Scholar 

  38. Gogberashvili, M.: Int. J. Theor. Phys. 50, 2391 (2011). arXiv:abs/1008.2544 [gr-qc]

    Article  Google Scholar 

  39. Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: JHEP 1302, 062 (2013). arXiv:abs/1207.3123 [hep-th]

    Article  ADS  Google Scholar 

  40. Braunstein, S.L.: Phys. Rev. Lett. 110, 101301 (2013). arXiv:abs/0907.1190 [quant-ph]

    Article  ADS  Google Scholar 

  41. Giddings, S.B.: Phys. Lett. B 754, 39 (2016). arXiv:abs/1511.08221 [hep-th]

    Article  ADS  Google Scholar 

  42. Penrose, R.: Riv. Nuovo Cimento 1, 252 (1969)

    Google Scholar 

  43. Piran, T., Shaham, J.: Phys. Rev. D 16, 1615 (1977)

    Article  ADS  Google Scholar 

  44. Cruz, N., Olivares, M., Villanueva, J.R.: Class. Quant. Grav. 22, 1167 (2005). arXiv:abs/gr-qc/0408016

    Article  ADS  Google Scholar 

  45. Kokkotas, K.D., Schmidt, B. G.: Living Rev. Rel. 2, 2 (1999). arXiv:abs/gr-qc/9909058

    Article  Google Scholar 

  46. Konoplya, R.A., Zhidenko, A.: Rev. Mod. Phys. 83, 793 (2011). arXiv:abs/1102.4014 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Gogberashvili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogberashvili, M., Pantskhava, L. Black Hole Information Problem and Wave Bursts. Int J Theor Phys 57, 1763–1773 (2018). https://doi.org/10.1007/s10773-018-3702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3702-x

Keywords

Navigation